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1 INTRODUCTION 

Since the commercial use of electricity in the late 1870s, a major portion of the 

energy needs of modem society has been met by electrical energy. The function of an 

electric power system is to convert energy from one of the naturally available forms to 

the electrical form and to transport it to the points of consimiption. The advantage of 

the electrical form of energy is that it can be transported and controlled with relative 

ease and with a high degree of efficiency and reliability. A properly designed and oper­

ated power system should, therefore, meet the following fimdamental requirements (see 

chapter 1 of [1]): 

• The system must be able to meet the continually changing load demand for active 

and reactive power. Unlike other types of energy, electricity cannot be conveniently 

stored in sufficient quantities. Therefore, adequate "spinning" reserve of active and 

reactive power should be maintained and appropriately controlled at all times. 

• The system should supply energy at minimum cost and with minimum ecological 

impact. 

• The "quality" of power supply must meet certain minimum standards with regard 

to the following factors: constancy of frequency, constancy of voltage, and level of 

reliability. 

Several levels of controls involving a complex array of devices are used to meet the 

above requirements. These are depicted in Figure 1.1 which identifies the various sub-
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Figure 1.1 Subsystems of a power system and associated controls [1] 
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systems of a power system and the associated controls. In this overall structure, there 

axe controllers operating directly on individual system elements. In a generating unit 

these consist of prime mover controls and excitation controls. The primary purpose of 

the system-generation control is to balance the total system generation against system 

load and losses so that the desired frequency and power interchange with neighboring 

systems is maintained. The transmission controls include power and voltage control 

devices and the controls described above contribute to the satisfactory operation of the 

power system by maintaining system voltages and frequency and other system variables 

within their acceptable limits. They also have a profound effect on the dynamic perfor­

mance of the power system and on its ability to cope with disturbances. Major system 

failures are rarely the result of a single catastrophic disturbance causing collapse of an 

apparently secure system. Such failures are usually brought about by a combination of 

circumstances that stress the network beyond its capability. 

1.1 Motivation for This Work 

Electric power systems have become more complex and the operating characteristics 

of many power networks around the world have been changing considerably [2]: 

• Economic constraints associated with the price of energy production and capital 

investment made it attractive to transfer massive amounts of energy across utility 

borders. Now, more than 40% of the power generated by major utilities is sold to 

other utilities. Moreover, power transfer among utilities have more than doubled 

since 1971. 

• Investments in transmission seems to be the hardest to justify. Almost every elec­

tric utility has experienced the difficulties of getting new transmission facilities 

approved and built, resulting in heavier loading of existing transmission. In some 

regions, the transmission is now fully loaded 95% of the time. 
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• The figures are not expected to he any better in the near future. Load growth is 

outpacing expansion. 

Therefore, available transmission and generation is highly utilized, with large amounts 

of power interchanged among companies and geographical regions. The stressed na­

ture of power networks, described above, has an impact on the system dynamic behav­

ior. Large stressed interconnected power systems exhibit complicated dynamic behavior 

when subjected to disturbances. This nonlinear complex behavior is not well analyzed 

with present tools, and a complete theoretical analysis of this is not feasible in large 

systems. However while a disturbance excites numerous modes of oscillation, only a few 

of these modes are of primary interest to the system designer. These include the poorly 

damped, low frequency interarea modes, in which generators that are geographically far 

away from each other participate, and control modes that represent the influence of the 

controllers on the system. In particular, excitation control is called upon to increase the 

damping of poorly damped inertia! modes. Utilities have relied on high initial response 

excitation systems as an effective control of voltage and enhancement of system sta­

bility. Adequate system dynamic performance now depends on proper performance of 

controls [3]. In large systems, the design of controllers usually follows from a linear sys­

tems analysis, neglecting the possible nonlinear interaction between modes. The control 

design based on a linear approach performs suitably for certain operating conditions. 

However, power systems are inherently nonlinear and can operate over a wide range of 

conditions. With stressed conditions, the interarea mode phenomenon may occur and 

control performance can be altered by possible unfavorable nonlinear modal interaction 

among the power system. Such nonlinearities have undesirable effects, and control sys­

tems have to properly compensate them. Therefore, it is important to understand the 

nature of these nonlinear modal interactions and incorporate them in the analysis and 

design procedure. Also, these system characteristics call for improved anedysis tools and 
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control design technique. This dissertation deals with these issues to develop a procedure 

to design controls incorporating the nonlinear information. 

1.2 Problem Statement 

The poorly damped, low frequency interarea modes play a crucial role in power 

system dynamic behavior, and controls are tuned to provide enough damping. If these 

modes interact with other modes nonlinearly, then the modal interaction may affect 

the control performance with respect to the crucial modes and control systems need to 

compensate such nonlinearities. 

The objective of this work is to understand the effect of nonlinear modal interaction 

on control performance and to develop a procedure to determine the optimal controller 

setting. In this work normal forms of vector fields are used to provide the information re­

garding the nonlinear modal interaction. In addition the linear and nonlinear sensitivity 

techniques are developed and used to supplement control design. 

1.3 Thesis Outline 

The organization of the material is as follows: This introduction gives a motivation 

and objective of the research work. After this introductory chapter, a literature review 

provides a concise record of the source material for this work and general simimary 

of the conventional linear gain tuning method. Chapter 3 presents the power system 

model used. In chapter 4, the general theory of eigenanalysis and normal forms is 

applied to the power system model described in chapter 3. Nonlinear modal interactions 

and mode-machine relationships are also addressed. Chapter 5 describes the sensitivity 

analysis which consists of sensitivity of the eigenvalue, eigenvector and normal form 

transformation coeflScient. Chapter 6 presents the proposed control tuning procedure. 

Numerical results of the application of these techniques to a stressed power system are 



www.manaraa.com

6 

presented in chapter 7. Chapter 8 provides conclusions, and the details of the derivation 

of the initial conditions, a sample program which makes use of parallel computing, and 

more data of the test system are found in the appendices. 
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2 LITERATURE REVIEW 

2.1 Analysis of Stressed Power Systems 

Oscillations associated with groups of generators, or groups of plants, are called in-

terarea modes and are complex to study, and to control. Kundur, et.al. [4, 5] have 

presented the natiure of interarea oscillation which is a characteristic of stressed power 

systems in the western United States using linear analysis techniques. In this study, both 

small signal and transient stability analyses are used to determine the characteristics of 

the system. Vittal, Bahtia, and Fouad [6] reported on the correlation between interarea 

modes and the size of the 2"'' order terms in the series approximation of system's dif­

ferential equations. Teimura, Yorino, and Yoo, et. al. [7, 8, 9] discussed auto-parametric 

resonance in the study of power system dynamic behavior. They described conditions 

for this type of resonance in the system's nonlinear oscillations and considered stressed 

system conditions. 

Several analytical tools for studying power system dynamic performance have been 

presented. Time domain simulation is a well-known and widely accepted means for 

stud3dng the nonlinear transient behavior of power system [4]. In the time domain 

simulation method, nonlinear differential and algebraic equations are used for modeling 

the power system, and these nonlinear equations are solved by an iterative step-by-step 

procedure to evaluate the system performance for various operating conditions, system 

configurations etc. This provides a detailed picture of the system's performance for spe­

cific conditions within the system. The disadvantages of this method are that the speed 
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of calculation is slow and this method can only tell us whether the system is stable or 

not, but can not provide qualitative information of the system's dynamic performance 

and sensitivity to system parameters. Direct methods based on the Lyapunov's theory, 

such as the transient energy function (TEF) method [10] are being used and further 

developed to analyze system performance and stability quantitatively. However, the 

information from TEF method is not enough to analyze the nature of the nonlinear in­

teraction. The eigenanalysis for system dynamic performance has been widely used [3]. 

Agrawal, Anderson and Van Ness [11] used eigenanalysis for analyzing SSR (SubSyn-

chronous Resonance). Another paper [12] describes eigenanalysis of second harmonic 

resonance related to a back-to-back dc links and associated static var compensators. 

Two papers [13, 14] describe more novel methods for examining one or more modes 

of very high order systems directly. They used the dynamic equivalencing and SMA 

(Selective Modal Analysis) to reduce the dynamic order of the system for eigenanalysis 

calculations. Despite several advantages of eigenanalysis, this is not suitable for analy­

sis of nonlinear modal interaction since eigenanalysis is based on the linearized system 

and modes are decoupled in the analysis. The use of normal forms of vector fields is 

a well known mathematical tool for dynamical system analj^is. It was presented by 

Poincare in his dissertation. Arrowsmith and Place [15], Arnold [16], and Ruelle [17] 

gave basic introductions to the Lie derivative-based method. A series of papers by the 

authors [18, 19, 20] shows that 2^ order nonlinear modal interaction obtained via nor­

mal forms of the system dynamics, allows insight into the nonlinear behavior of a power 

system (including AC/DC systems) and can be used to predict interarea separation [21]. 

For controlled power systems, [18] shows, by analyzing a four generator test system [1], 

that 2**^ order nonlinear interactions between low frequency inertial modes and control 

modes are crucial to understand the dynamic behavior of these systems. 
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2.2 Excitation Control 

The basic function of an excitation system is to provide direct current to the syn­

chronous machine field winding. In addition, the excitation system performs control 

and protective functions essential to the satisfactory performance of the power system 

by controlling the field voltage and thereby the field current. Figure 2.1 shows the 

functional block diagram of a typical excitation control system for a large synchronous 

generator. The following is a brief description of the various subsystems identified in 

the figure (see chapter 8 of [1]). 

• Exciter provides dc power to the synchronous machine field winding, constituting 

the power stage of the excitation system. 

• Regulator processes and amplifies input control signals to a level and form ap­

propriate for control of the exciter. This includes both regulating and excitation 

system stabilizing functions. 

• Terminal voltage transducer and load compensator senses generator terminal volt­

age, rectifiers and filters it to a dc quantity, and compares it with a reference which 

represents the desired terminal voltage. 

• Power system stabilizer provides an additional input signal to the regulator to 

damp power system oscillations. Some commonly used signals are rotor speed 

deviation, accelerating power, and frequency deviation. 

• Limiters and protective circuits include a wide array of control and protective 

functions which ensure that the capability limits of the exciter and synchronous 

generator are not exceeded. 

The basic requirement is that the excitation system supply and automatically ad­

just the field current of the synchronous generator to maintain the terminal voltage as 
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Ref. 

Exciter Regulator 

Terminal voltage 
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load compensator 

Generator 

Limitersand 
protective circuits 

Power system 
stabilizer 

Figure 2.1 Functional block diagram of a synchronous generator excitation 
control system [1] 
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the output vaxies within the continuous capability of the generator. In addition, the 

excitation system must be able to respond to transient disturbances with field forcing 

consistent with the generator instantaneous and short-term capabilities. To ensure the 

best utilization of the excitation system, it should be capable of meeting the system 

needs by taking full advantage of the generator's short-term capabilities without exceed­

ing their limits. 

The role of the excitation control systems in enhancing power system performance 

has been growing continually. In particular, the effects of the excitation systems on 

synchronous machine stability are widely investigated [22]. Physical systems including 

power systems are inherently nonlinear. Thus, all control systems are nonlinear to a 

certain extent. Nonlinearities may occur in any part of the system, and thus make it 

a nonlinear system. Usually, such nonlinearities have undesirable effects, and control 

systems have to properly compensate for them. Therefore we need a way to characterize 

and reduce the nonlinearities of power systems. 

2.3 Linear Gain Tuning Method 

Linear gain tuning algorithms adhere roughly to the following procedure: The crit­

ical (low frequency interarea) inertial modes with poor damping are identified. For the 

corresponding eigenvalues the sensitivity with respect to the exciter gains is computed. 

The exciter gain is shifted so that the real part of the critical eigenvalues becomes more 

negative. As a measure of the appropriate shift the linear approximation of the eigenval­

ues as ftmctions of the exciter gains is used. The linear approximation can be computed 

from the eigenvalue and from its sensitivity. A technique based on the linear analysis 

of the system neglects potentially important terms in the system response. Therefore, 

it cannot always predict system behavior correctly (see [21] for e.g., analysis of system 

separation). Furthermore, such a technique does not always provide the mechanism by 
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which control settings influence the inertia! modes as we will see below. The choice of 

the most influential exciter and of the amount of gjiin shifting may lead to inappropriate 

settings for system dynamic performance, when based on linear anadysis alone. Finally, 

optimal gain values for the linear system and for the nonlinear system may be differ­

ent, due to differences in the linear and the nonlinear response behavior. Therefore we 

propose a technique based on 2"'^ order normal forms. 
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3 POWER SYSTEM MODELS 

In this chapter the power system model used in this dissertation is presented. 

3.1 Generator Modeling 

In this section simplified models of the generator are discussed. In power system 

dynamics study the response of a large nimaber of synchronous machines to a given 

disturbance is investigated. The complete mathematical description of the system would 

be very complicated unless some simplifications were used. Often only a few machines 

are modeled in detail while others are described by simpler models. 

In this work, we used two kinds of generator models which are the two-axis model 

and the classical model (see chapter 2 and 4 of [23]). We assume that in an n-generator 

system there are m generators represented by the two-axis model and equipped with 

exciters, the remaining n-m generators are presented by the classical model. 

3.1.1 Classical Model 

The classical model is based on the following assumptions: 

1. Mechanical power input is constant. 

2. Damping or asynchronous power is negligible. 

3. Constant-voltage-behind-transient-reactance model for the synchronous machines 

is valid. 
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4. The mechajQical rotor angle of a machine coincides with the angle of the voltage 

behind the transient reactance. 

The equations of motion are given by 

MiUi = Pi-Pei (3.1) 

6i = (jJi — us i = m + 1, m + 2,..., n 

Pi = P™ - Gii 
n 

Pei = S [CijSin{5i - 5j) + DijCos{5i - 5̂ )] 

Cij = EiEjBij 

Dij = EiEjGij 

Ei'. internal bus voltage of generator i 

Mi. inertia constant of generator i 

Pmi'. mechanical power input of generator i 

Gal driving point conductance of node i 

Gij -k- jBif. the transfer admittance in the system reduced to the internal 

node between generators i and j 

uji'. rotor speed of generator i (with respect to synchronous frame) 

Us: synchronous speed 

Sii rotor angle of generator i 

This model is used to represent the generators without excitation control in this 

work. 

where, 

and 
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3.1.2 Two-axis Model 

Generators with excitation control are described by the two-axis model (see chapter 

4 of [23]) in this work. In the two-axis model the transient effects are accounted for and 

the following assumptions are required. 

1. In the stator voltage equations the variation of flux linkages of d-q axes are negli­

gible compare to the speed voltage terms. 

2. u '=u)R = l p.u. 

The resultant dynamic equations are given by 

^dOi Di ) ̂ di 

~ ~^di + ~ 

MiUi = Pmi {.^di^di ^i{^i ^s) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 5i = Ui — ujs i = 1) 2,..., m 

where, 

E'd, E'g-. direct and quadrature axes stator EMFs corresponding to rotor 

transient flux components, respectively 

Id, Iqi the d and q axes stator currents 

open-circuit direct and quadrature axes transient time constants 

Xd, x'd- direct axis sjrnchronous and transient reactances 

Xq, x^: quadrature axis synchronous and transient reactances 

Efd'- stator EMF corresponding to the field voltage 

D: damping coefficient 
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3.2 Excitation System Modeling 

The block diagram of the exciter model [24] is shown in Figure 3.1 and all components 

in this model are static or stationary. The variables are Efd, ^ei, and Xe2. The 

dynamic equations for the variables are given by 

where, 

EpDi = =7% (3.6) 
•^Ai-^E2i J-Ai 

XBU = ~XEu + i^Vii (3.7) 
iffi -LRx 

J-Bi •LRi J-Bi 

VTi + ^(V^Pi + Vsi) + '^Vsi (3.8) RR  ̂ ^7 * * • \ rrr 
-t BiJ- Ri J- Bi J- Bi 

VP — VRQ + J^TD 

= {E:+XaId)+jiE'a-xIg) i = l,2,...,m (3.9) 

Vt: generator terminal voltage 

Vref- exciter reference voltage 

(^Ai{= power system stabilizer input (speed deviation in p.u.) 

3.3 Network Modeling 

The network is represented classically: quasi state-steady network parameters, con­

stant impedance loads, etc. Assuming the generator internal reactance to be constant, 

a network representation at the internal generator nodes can be obtained. A network 

Ybua consists of YijiOij = Gy + The procedure described in chapter 9 of [23] yields 

the direct and quadrature axes currents for the generators represented in detail. The 

currents for the classically represented machines can also be obtained. In this case, for 
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Figure 3.1 Static exciter model 

the classical generators jE^ = 0 and ifg = E = constant. Then the generator currents 

are given by 

I* = + E 
j=l A:=m+1 

+ FG+B(IO)4L + E FB-A(SIT)EI, 
J = 1 

m n 

h = E[Fo+BW,)4 - FB-c(S,jW^] + E F<:*BiSu)E, 
j=l l=m+l 

i = 1,2, ...,m k,l = m + l, ...,n 

(3.10) 

(3.11) 

(3.12) 

where 

FG+B{Sij) = GijCos{5ij) + Bijsin{6ij) 

Fa-s iSi j )  =  BijCos{Si j )  -  GijSin{6i j )  

Sij = Si — Sj 

(3.13) 

(3.14) 

(3.15) 
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3.4 System Equation 

The dynamic equations governing the generators and the excitation system have the 

general form 

X = f (x) (3.16) 

where, 

^ ~ ["^^1' ^dX ' '''ij ^FDX ) ^El i  > ^E2i > • • • i ^tm ̂ riii ^FDmi ^Elm' ̂ E2m > • • •» ^n] ; 

and f is an analytic vector field which maps into and is continuously differen-

tiable. The vector f is made up of seven functions as given below. 

fu  =  K  

= \EFDi ^qi "I" {p^di ~ ^ ~ '"J 
"̂ dOi 

f2i = E'di 

= {Xqi Xqi)^qi] 2 = 1,...,771. (3.18) 
•̂ 901 

fsi = 

= - (IdzE'di + IqiEf^) - Di{(jJi - UJs) i = 1, U (3.19) 

— (jj 

= uji — Us i = 1,..., n (3.20) 

/st = EpDi 

~~ Tp,—EpDi ^ — Ij •••) ^ (^-^l) 
TaiXeh TAI 

fsi ~ ^Eli 

^Eii + T^Vri i = Ij •••> JTi (3.22) 
Tfii Tsi 

hi = XE2i 
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J-Bi J-Ri J-Bi 

•VTi + ̂ (ymFi + Vsi) + '^Vsi i = l,...,m (3.23) 
J-BiJ-Ri J-Bi J-Bi 

A point, Xep is called as an equilibrium point if f(xep) = 0. We assume that the 

total order of the system (3.16) is N. The system of N equations represent {N — 1) 

independent equations and can be reduced from iV to iV -1 by introducing the relative 

angles. 
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4 EIGENANALYSIS AND NORMAL FORMS OF VECTOR 

FIELDS 

4.1 Eigenanalysis 

Linear systems can be described by either the input-output description, or the state-

variable description. Once these descriptions are obtained, we can analyze them quali­

tatively and quantitatively. In the qualitative analyses, we are interested in the general 

properties, such as controllability, observability, participation factors and stability, of 

the equations. In the quantitative analyses, we are interested in the exact responses 

of equations due to some excitation. Digital computers can be used to carry out these 

analyses. However computer solutions are not in closed forms, and it is difficult to 

extrapolate any properties from these solutions. 

Because of the powerful tools we know for linear systems, the first step in analyzing 

a nonlinear system (3.16) is to linearize it about some nominal operating point and 

analyze the resulting linear model. If the operating range of a system is small, and if the 

involved nonlinearities are smooth, then the system may be reasonably approximated by 

a linearized system having dynamics described by a set of linear differential equations. 

In order to find the genersd properties of the dynamical equation (3.16), we apply the 

qualitative analyses on the linearized equation (4.2) of (3.16) (see chapter 1 of [25]). An 

important concept in dealing with the linearized equation is the concept of an equilibrium 

point. A point x = Xgp in the state-space is said to be an equilibriimi point of (3.16) if 

it has the property that whenever the state of the system starts at Xgp it will remain at 
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Xep for all future time. For the equation (3.16), the equilibrium points are the real roots 

of the equation (4.1). 

f(x) = 0 (4.1) 

The dynamics of the linearized system of (3.16) at x^p are of the form 

X = Ax (4.2) 

where, 

A = [5f/ax]^, 

In order to determine the stability of x^p, we must understand the nature of solutions 

near Xep. Let 

X = Xep + Xr (4.3) 

Substituting (4.3) into (3.16) and obtaining the Taylor's series about Xgp gives 

X = Xep + Xr = f (Xep) + Ax^ + H.O.T. (4.4) 

Using the fact that Xep = f(Xep), (4.4) becomes 

Xr = AXr + H.O.T. (4.5) 

Equation (4.5) describes the evolution of orbits near Xgp. For stability questions 

we are concerned with the behavior of solutions arbitrarily close to x^p, so it seems 

reasonable that this question could be answered by studjdng the associated linear system 

Xr = AXr (4.6) 
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Therefore the solution of (4.6) through the point Xr(0) of t = 0 can be written as 

Xr(«) = e^^Xr(O) (4.7) 

Thus, Xr{t) (i.e. Xep(t)) is asymptotically stable if all eigenvalues of A have negative 

real parts. 

Eigenvalues are defined as the solutions to the matrix equation 

det[XL — A] = 0 (4.8) 

where the parameters A are called the eigenvalues. 

A vector u is called an eigenvector of A if u satisfies the equation (4.9). 

Au = Au (4.9) 

Similarly a vector v is called an left eigenvector of A if v satisfies equation (4.10). 

A^v = Av (4.10) 

Whereas each eigenvector has a unique eigenvalue associated with it, each eigenvalue 

is associated with many eigenvectors. The following propositions concern important 

properties of the eigenvalues and eigenvectors of an iV x AT matrix A: 

1. The eigenvalues of A (not necessarily distinct) 

A(A) = Ai,..., A;v-

are the N roots of the characteristic equation (which is a polynomial of the iV-th 

degree in A). 

2. A linear combination of eigenvectors associated with the same eigenvalue is also 

an eigenvector associated with that same eigenvalue. In particular if x is an eigen­

vector, then cx, where c ^ 0 is constant, is also an eigenvector. 
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3. Any left (right) eigenvector of A is orthogonal to any right (left) eigenvector of A 

except its own pair: 

T  
= 0 for i  ̂  j 

{hJ  = h- ,N)  
0 iox i= j 

where the eigenvectors have been normalized so that v^u,- = l(i = 1,N).  

4. Let the N x N  matrix A have N  linearly independent right eigenvectors Ui,u^r-

Therefore the set of vectors Ui,ujv can serve as a basis for the N-dimensional 

vector space R^. Any N-component vector x can be expressed in the new basis as 

N 
x = 21 XTt-Ui = Uxr 

t=i 

where XTi is the i-th component of the transformed vector Xt and 

U = [Ui ... Uiyr] 

is the right modal matrix of A. The left modal matrix V can be defined in the 

same fashion 

V^ = 

and, assuming that the left eigenvectors have been normalized as indicated before 

v^ = u-i 

so that the variable transformation can also be written as 

xr = V^x 
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4.1.1 An Example of Eigenanalysis 

The following example is borrowed from [26]. 

Assimae that the population of a comitry is divided into three distinct segments, rural, 

urban and suburban. The natural growth rates with respect to time due to procreation in 

the three segments are equal to ov, and as, respectively. The population distribution, 

however, is modified by migration between the difierent segments. The rate of this 

migration is in part influenced by the need for a base of rural activity that is adequate 

to support the total population of the country, the optimal niral base being a given 

fraction y of the total population. The rate of migration from the rural to the urban area 

is proportional to the excess of rural population over the optimal rural base, with /3 being 

the proportionality factor. If the rural, urban and suburban populations at a certain 

time t are denoted by Xr(t), Xuit) and Xa{t), respectively, then the total population is 

Xr{t) +a;u(t) +a:s(^)) the optimal rural base is 7 [XrCi) +^u(^) +a:5(t)], and thus the excess 

rural poptilation is Xt{t) —y[xr{t) +a;u(i) +a;5(t)]. Another migration pattern takes place 

between the iirban and suburban segments, with the net effect being that the urban 

population moves to the suburbs at a rate that is proportional to the amoimt of urban 

population itself. The proportionality factor is denoted by 5. A simple continuous-time 

model of the migration process, based on the above assumptions, is then 

= 0:50:5 (t) + 5xr,{t) 

=  O u X ^ i t )  +  P X r { t )  -  j [ X r { t )  +  +  X 5 W ]  "  S X u { t )  

=  a r X r ( t )  -  0 X r { t )  -  j [ X r i t )  - | - X « ( t )  +  X i W ]  

or, in state vector form (4.2), 

X = Ax 
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Qs 5 0 

A = -jSj Ou-p'Y-S 

M — y0(l - 7) 

as = 0.045(10years)~^ 

ttr = 0.050(10years)~^ 

QTu = 0.055(102/ears)~^ 

5 = 0.200(10years)~^ 

^ = 0.100(10j/ears)~^ 

7 = 0.200 

Each of these pai'ameters might normally change with time, but they are assumed 

to be constEoit for purposes of this example. The resulting A matrix is; 
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A = 

0.045 0.200 0.0 

-0.020 -0.165 0.080 

0.020 0.020 -0.030 

Our first objective will be to understand the various patterns of behavior built into 

the model. Examination of the eigenvalues and eigenvectors of the system matrix A is 

the commonly used approach. The results of eigenanalysis of A are: 

Eigenvalues: 

-^1 0 0 0.046 0 0 

0 A2 0 = 0 -0.143 0 

0 0 A3 0 0 -0.053 

Right eigenvectors: 

1.0 1.0 1.0 

0.005 -0.939 -0.492 

0.264 -0.011 -0.438 

Left eigenvectors: 

V^ = 

0.770 0.811 0.852 

-0.243 -1.335 0.947 

0.473 0.524 -1.799 

which have been normalized so that 

UV'' = V''u = I (4.11) 
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Several things can be learned from the above results. The only growing natural 

mode (Ai = 0.046) must reflect the overall population growth. This is the dominant 

mode and the entries in the associated right eigenvector define the relative distribution 

of population = 1.0, = 0.005, Xr = 0.264) that will be reached in the long nm, 

when all the other dynamics have vanished. This is also the initial relative distribution 

of population that is needed in order for all variables to have a purely exponential growth 

with Ai = 0.046. However, given any initial population distribution x(0), in general the 

three natural modes will be excited, with the left eigenvectors determining the share of 

the initial state x(0) corresponding to each mode 

x(0) = [vf x(0)]ui + [v^x(0)]u2 + [vfx(0)]u3 (4.12) 

and thus with the following natural time response 

xW = E[vrx(0)]uie^'' (4.13) 
i=l 

The exponentially decreasing modes 2 and 3 describe how any deviation in the pop­

ulation distribution with respect to the proportions given by Ui will evolve with time, 

eventually vanishing. The second natural mode (A2 = —0.143) basically concerns sur­

pluses (deficiencies) in the urban population combined with deficiencies (surpluses) in 

the suburban one, which excite the dynamic pattern of migration between the urban and 

suburban areas. This can be seen from the value of A2 itself, which is close to au — S, and 

also from the entries of the right eigenvector U2 showing that large and almost opposite 

values of ar„ and Xg (that only require a very small base of rural population) are all that 

is needed to excite this mode. Similarly, the third natural mode (A3 = —0.053) concerns 

surpluses (deficiencies) in both the urban and rural population combined with deficien­

cies (surpluses) in the suburban one. Thereby the two existing migration patterns are 

significantly active in this mode. In all three modes the corresponding left eigenvector 
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also tells us what linear combination vfx(O) of the original states is the precise system 

variable that varies exponentially as Af. Therefore the entries of vf also provide an 

indication of the level of involvement of the various state variables in the i-th natural 

mode. This issue will be discussed later in more detail. It must be realized that slightly 

different nimierical values of the system parameters may yield substantially different dy­

namic behaviors. For instance, with a, = 0.04, ov = 0.05, = 0-06, <5 = 0.10, = 0.07 

and 7 = 0.20, the eigenvalues are 0.043 and —0.031 ±^0.015, indicating that there is an 

oscillatory pattern superimposed to the overall exponential population growth. 

There is seemingly no difficulty with the proposed task. Complete eigenanalysis of the 

entire model can be performed for each scenario. Then, inspection of the eigenvalues and 

eigenvectors will provide the desired understanding of the model, as was shown before. 

4.2 The Normzd Forms of Vector Fields 

4.2.1 Normal Forin Theorem and Transformation 

Prom chapter 2 of [25]: The method of normal forms provides a way of finding 

a coordinate system in which the dynamical system takes the simplest form. As we 

develop the method, three important characteristics shotild become apparent. 

1. "The method is local in the sense that the coordinate transformations are generated 

in a neighborhood of a known solution. For our purposes, the known solution will 

be an equilibrium point." 

2. "In general, the coordinate transformations mil be nonlinear functions of the de­

pendent variables. These coordinate transformations are found by solving a se­

quence of linear problems." 

3. "The structure of the normal form is determined entirely by the nature of the linear 

part of the vector field." 
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Consider the vector field (3.16). First we expand (3.16) as a Taylor's series about a 

stable equilibrium point xsep which is the equilibrium point where the linearized system 

is stable, and obtain using again x and x,- as the state variables. 

Xi = AiX + ̂ x^ITx + H.O.T. (i = 1,2,..., N) (4.14) 

where, 

A," = ith row of Jacobian A which is equal to [df/dx\x.sBP 

Hi = [9^fi/5xj5a;jt]xse/>=Hessian matrix 

Denote by J the (complex) Jordan form of A, and by U the matrix of the right 

eigenvectors of A. Then the transformation x = Uy yields for the linear and the 2"'' 

order terms of (4.15) the equivalent system 

w = + 0 = 1,2 N) (4.13) 
Jfc=li=l 

where, 

= 5 E = [C|,] C;', A, i = 1,2 N) 
P=1 

and V denotes the matrix of associated left eigenvectors. If the 2^ order non-resonance 

condition holds, i.e. if Xj ^ Xk + Xi for all three tuples of eigenvalues of A, then the 

normal form transformation of (4.15) is defined by 

y = z + h2(z) (4.16) 

where, 

= f: f ;k4 ,z tz ,  a  = 1,2 , . . . ,N)  
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= A, + x!- A,- = 

The chosen h2(z) is of a specific form to simplify the high order terms as much as 

possible. 

In the z-coordinates, the system (4.15) takes on the form 

Zj  =  XjZj  +  H.O.T.  { j  =  1,2,..., N) (4.17) 

Equations (4.14)-(4.17) allow us to obtain explicit 2"'' order solutions for the system 

in the different coordinate systems. In the z-coordinates the solution of (4.17) is given 

by 

Zj( t )  =  {j  = 1,2,..., N) (4.18) 

where Zjo represents the initial condition. 

According to (4.16), the closed solution in the y-coordinates can be expressed by 

yj{ t )  =  Zj{ t )  +  h2\z{ t ) )  { j  =  1,2,..., N) (4.19) 

Substituting for Zj( t )  from (4.18), we have 

yj{ t )  =  Z)  U = 1,2,..., N) (4.20) 
Jk=X 1=1 

The transformation x = Uy gives the solution in x-coordinates as 

^iii) = S UijZjoe^'^ + Y, Uij[J2 hTiiZkoZioe^^'''^^'^^] (i = 1,2,..., N) (4.21) 
j=l j=l k=l 1=1 

In the above analysis the initial condition Zo plays an important role. The details of 

obtaining z<, are given in Appendix A. 
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4.2.2 The Quantification of 2^ order Nonlinear Modal Interaction 

The presence of the nonlinear modal interaction has strong effect on system perfor­

mance. Therefore the quantification of nonlinear modal interaction is needed to under­

stand and control the interactions. For this purpose we introduce several indices. 

4.2.2.1 Nonlinear Interaction Index (II) [27] 

Let us start from the Jordan variable space y € C'', where d is the appropriate 

dimension for the generator and/or control variables. The h2 transformation maps the 

z-space into the y-space via (4.22) 

yj{t) = Z j{t) + h2^{z{t)) {j = 1,2,..., d) (4.22) 

Assuming no 2"*^ order resonance, i.e. Ajt -H A; — Xj 7^ 0 for all A:, I, and j, the system 

in 2-space is linear. 

z = Jz (4.23) 

where, J is the Jordan form of the linear term of the system equations, i.e. J is a 

complex, diagonal dx d matrix. Equation (4.23) is solved as 

Zj{t) = {j = 1,2,..., d) (4.24) 

where zjo is the initisil value. 

The corresponding solution of (4.22) is 

yj{t) = Zjoe^'^ + I] Z) hTiiZkoZioe^^"-^^'^^ {j = 1,2,..., d) (4.25) 
k=ll=k 

which contains all 2"*^ order terms corresponding to the normal form (4.22) and (4.23). 

Note that the r.h.s. of (4.25) contains influences of the nonlinearity in both terms; In Zjo 
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the nonlinear coordinate transformation (4.22) is reflected only in the initial value, in the 

second term the 2"'' order correction of the solution due to nonlinear modal interaction 

is represented. The linear system in y-space is 

y = Jy (4.26) 

with solution 

Vii i )  = U = 1,2,..., d)  (4.27) 

which corresponds to the linearization of the original system alone. The comparison of 

(4.24), (4.25), and (4.27) yield various indices, which will be discussed below. Note first 

of all that /i2^j is large, and it contributes to the second term in (4.25), if 

a) Ch is large 

b) Afc + Ai — Xj is small, i.e. Xj « Afc + A/ 

Comparing (4.24) and (4.27), we can assess the influence of the nonlinear effect on 

the initial value by considering 

IVj i t )  -  Zji t ) I = Ivjo -  Zjo\e^ '*  { j  = 1,2,..., d) (4.28) 

or simply 

(•̂ ) IVjo  ~  Zjo\  

because the entire solutions just scale this initial distance with Hence if (A) is 

large, the distance between (4.24) and (4.27) the nonlinear influence on the initial value 

is large. To this term which represents the difference in the linear part of the approximate 
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solution and the linear solution, we add the 2^ order terms to capture the effect of the 

nonlinearities on the difference between the terms. Hence we obtain 

I iVjo  -  Zjo)e^ '^  +  h2i iZkoZioe^^ ' ' ' ^^^^^\  { j  =  1,2 , . . . ,d)  (4.29) 
fc=i i=k 

The expression (4.29) is unwieldy for fast computations in large systems, so we make 

two approximations 

a) We consider only the largest term h2?f^ZkoZio and assume that all other terms are 

small compared to the largest one. 

b) We note, as above, that is large if \j w Aa: + A/. 

and the corresponding index is 

•flO") = \{yjo  -  Zjo)  +  maxh2! ' ,^ izkozio\  { j  = 1,2,..., d) (4.30) 

where maxk,i h^ki^koZio is the complex form when maxA;,/ \h2i'kiZkoZio\ occurs. 

This is called "nonlinear interaction index" and identifies the dominant modal inter­

action. 

4.2.2.2 Nonlinearity Index (12) 

Similarly, the relative amount of the 2^'^ order nonlinearity at mode j can be expressed 

by the relative size of (4.24) and (4.25). 

1^1-I 1 { j - l ,2 , . . . ,d)  (4.31) 
Zjoe 

If we consider same approximations as before, then it leads to 

1^1 ̂  |1 + < 1 + I d) (4.32) 
Z j { t )  Z j o  Z j o  
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From this equation we introduce the "nonlinearity index" 12 which is defined as 

rnj) = y = 1,2 d) (4.33) 
Zjo 

The nonlinearity index is a measure of the relative size of the nonlinearity in the 

initial value and represents the normalized severity of nonlinear interaction. 

4.2.2.3 Second order interaction coefficients 

The 2"'' order interaction coeflScients of mode j are defined as 

h2{iZkoZio (k, 1 = 1,2,d) (4.34) 

as they appear in equations (4.20) and (4.21). Since the nonlinear part of explicit 

2"'' order solutions for the system depends on the hOi^ZkoZio, this can represent the effect 

of the higher order terms of mode j with mode k and mode I 

4.2.3 Participation Factors 

4.2.3.1 Linear Participation Factors 

Linear participation factors are a well-known method of identifying mode-machine 

interactions [28], and for their definition an interpretation of the meaning of the right 

and left eigenvectors needs to be given now. A right eigenvector can be seen as 

a particular value of the state x. If the state x(0) points initially in the direction of a 

right eigenvector 11, it will continue to point in the same direction although its magnitude 

may change, and therefore only the corresponding i-th natural mode excited. In the case 

of independent eigenvectors, the initial state x(0) can always be expressed as a linear 

combination of the N right eigenvectors, with the weighting coefficients each changing 

with time. On the other hand a left eigenvector v,- is more naturally interpreted as 
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defining the scalar function of the state variables 

X T i  =  vfx 

which is exclusively associated to the i-th natural mode. A left eigenvector Vj defines a 

certain linear combination of the components xt of the state vector. The entries of v,-

are the proper weights of the states that yield the decoupled variable xn- Therefore, 

the participation factor pki represents a measure of the participation of the A:-th machine 

state in the trajectory of the i-th mode. It is given by 

Pki — Uki * Vki (4.35) 

Since linear participation factors are functions of both the left and right eigenvectors, 

they are independent of eigenvector scaling. They have been used to determine the site 

of the control, and to classify modes of the system into different groups such as interarea 

modes, control modes, and local plant modes; we will make useof them in this latter 

way. 

4.2.3.2 Nonlinear Participation Factors 

For analyzing the modal interactions we need to use a new concept of participation 

factors, the nonlinear participation factors which could identify the participating states 

in the combinational modes. Using normal forms, we apply the nonlinear participation 

factor [29]. The normal form initial conditions, using the 2^ order approximation of 

the inverse transformation (4.16), can be used to express the solution for fc-th machine 

state variable as 

^k{t) = 51 ̂ki{Vik + VSikk)^^'* + ^^kpg(Vpk + u2pfcfc)(V^jk + v2gii;k)e^^'''''^^^ (4.36) 
i=l p=l g=p 

(A: =1,2,..., AT) 
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where u2iki and v2ipp are the elements of 2*^ order right eigenvector and 2^ order left 

eigenvector, and these are given by 

Jfc=i 1=1 

N 
UijhQ^i^i 

j=i 

Using the approach given in [29], one can define 2"'' order participation factors ac­

cording to 

Xk{t)  =  f ;p2fc,-e^<' + f ;  f ;p2Ap,e(^^+^)' (k  = 1,2,N) (4.37) 
t=l p=l 9=P 

where, 

p2ki = Uki{Vik + V2ikk) 

p2kpq — '^^kpqiyjjk "(• '^2piik)(y^qk "f" ^2^^^) 

Note that there are two types of 2"'^ order participation factors. The p2ki represents 

the 2"*^ order participation of the A:-th machine state in the i-th single eigenvalue mode. 

In fact, the linear participation factor, pku is one term in the expression for p2ki which 

includes the 2"'^ order corrections. The p2kpq represents the 2^ order participation of 

the A:-th machine state in the 'mode' formed by the combination of the p and q modes. 

This can be iised to provide the participating states at the combination modes which 

have strong interactions with the critical modes. 
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5 SENSITIVITY ANALYSIS 

5.1 Eigenvalue Sensitivity 

Based on the eigenanalysis in the previous chapter, the free motions of a dynamical 

system governed by the equation: 

x = Ax (5.1) 

are given by the expression: 

xW (5.2) 
i=l 

In equation (5.1), x is the N x I state vector of the system, A is an iV x AT matrix 

with distinct eigenvalues A,(i = 1,2, ...,iV): in (5.2), Uj(i = 1,2, ...,iV) are the linearly 

independent eigenvectors of A which satisfy: 

Aui = AjUi (5.3) 

and V j { j  = 1,2,..., N) axe the corresponding eigenvectors of A^ which satisfy: 

vJA = Ajvf (5.4) 

Ui and Vj satisfy the equation: 
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ufvj = vjui 
= 0 for i  ̂  j 

ii,j = l,...,N) (5.5) 
^ 0 for i = j 

The corresponding fundamental problem in sensitivity theory is to determine the 

sensitivities of Xi, Ut, Vt(z = 1,2, to changes in system parameters, i.e. to changes 

in the elements of the matrix A [30, 31]. In power system (3.16) the vector field f 

depends on the parameter cr of the exciters present in the system, as do all the terms 

of the Taylor's series (4.14) including A. If A = [a«] and the element is perturbed 

due to changes in system parameter cr, then the eigenvalues and eigenvectors of A will 

change. Indeed, partial differentiation of equation (5.3) with respect to Uki indicates 

that 

dA . dui dXi dui 
^ + A— = —Ui + Ai— (0.6) 

daki daki dau daki 

Pre-multiplication of equation (5.6) by vf then gives 

T ^A. . dUf fp d\i . iT> . . 
vf—Ui + Aivf ^ + Afvf ̂  5.7 

daki ouki daki oau 

daki ^ ^ 

Using the fact that 

dA 

daki 

equation (5.7) reduces to the set of scalar equations: 

^ = VkiUii (i, kj = l, 2,..., N) (5.9) 

In equation (5.9), and Uu are respectively the A?-th element of v,- and the l-

th element of Uf. Therefore the desired eigenvalue sensitivity coefficients which relate 

changes in the A,- to changes in the a are given by 
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(z = l,2,...,JV) (5.10) 

as the sensitivity of the f-th eigenvalue with respect to a. 

5.2 Eigenvector Sensitivity 

The eigenvector changes arising from a perturbation of the element aki of A can be 

determined very simply by differentiating both equations (5.3) and (5.4) partially with 

respect to a^, and by writing the resulting equations in the form [30, 31]: 

,. - dvii dXi dA 

\  T ^  T  

Since Ai and Xj are eigenvalues of A, the matrices (A—Ajl) and (A-Ajl) are singiUar 

so that equations (5.11) and (5.12) cannot be solved immediately for the eigenvector 

sensitivity coefficients dui/doki and dvj/daki-

Nevertheless, if equation (5.11) and (5.12) is pre-multiplied by vJ(j ^ i) and is 

post-multiplied by iii(2 # j), it follows that 

(Aj-Ai)vf^ = -Vi,U„ 0#'iJ = l>2 A') (5.13) 

dvJ 
^u.(A,--A,) = -VjkUii {i^j-i = l,2,...,N) (5.14) 

in view of equations (5.5) and (5.8). Now, if equation (5.13) is pre-multiplied by \ij(j  ̂  i) 

and equation (5.14) is post-multiplied by vf, it becomes that 
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^Uivf  = { i^  j- , i  =  1,2 , . . . ,  N)  (5.16) 

Equations (5.15) and (5.16) can be written more compactly by introducing the ma-

tricies 

Gji = = (5.17) 

St = Vftif (5.18) 

In fact, equations (5.15) and (5.16) then become 

= 9jl^j (i = l,2,...,iV) (5.19) 

dv^ 
-^sj = j;i= 1,2,..., N) (5.20) 
CfUkl  

Since the eigenvectors of A and are linearly independent because of the assump-

tion of distinct eigenvalues, the reqiiired vectors ^ and may be expanded in terms 

of the Uf and vj, respectively. Thus, in the first case, let 

so that 

^ = E (5.21) 
rn==i 

(hi: ^ . 
= UjvJ (J  ^ i - , j  = 1,2,..., N) (5.22) 

and in the second case let 

dv^ ^ 
^ = E (5.23) 

so that 
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dvt ^ 
^ s f  =  ( x: ( i  ̂  j - i = 1,2,..., N )  (5.24) 
°°-kl m=l 

It now follows by comparing (5.19) with (5.22) and (5.20) with (5.24) that 

= 9ii (5.25) 

#' Sjl ( i # j ; i  =  l , 2 , . . . , A r )  ( 5 . 2 6 )  

If the resiilts given in equations (5.25) and (5.26) are now used in equations (5.21) 

and (5.23), the latter equations become 

^ = #'u..+ f; g^Ui (i,S:,( = l,2,....iV) (5,27) 
daki 

dvt . . ^ 
9'jl^ (z,A;,^ = l,2,...,iV) (5.28) 

1=1,tW 

which give the reqiiired eigenvector sensitivity coefficients. The coefficients and 

may be left as completely arbitrary coefficients unless it is desired to constrain the 

perturbed eigenvectors to satisfy conditions of the form (5.5). If this is the case, then 

the coefficients must be such that 

(vj + dvj)(iii + dvLi) = (vj + + ^^daki) = % (5.29) 

It can be readily verified by substituting from equations (5.27) and (5.28) into (5.29) 

that the latter equations will be satisfied to first order of approximation if 

= = (z = l,2,...,iV) 

Equations (5.27) and (5.28) for the eigenvector sensitivity coefficients will then have 

the form 
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^ = (i,t,i=l,2,...,JV) (5.30) 

qyt ^ 
= -CfvJ- S 9jl^ {j,k,l = l,2,.. . ,N) (5.31) 

where the Ct*' are arbitrary. However, the most convenient choice is perhaps 

Cf' = 0 {i,k,l = 1,2,.. . ,  N) 

Therefore the eigenvector sensitivity coefficients with respect to the change of system 

parameter a are given by 

^ = E (i = 1.2....,Ar) (5.32) 

^ = - E U = l,2,.. . ,N) (5.33) 

5.3 Sensitivity of the Normal Form Transformation 

The normal form transformation (4.16) provides the second order terms in the system 

and its coefficient is given by 

hVa = U, k,l = 1,2 N) (5.34) 

Using equation (5.34) we obtain for its sensitivity with respect to the exciter param­

eter (7 as follows. 

+  ~  +  ( j  k  1 - 1 2  N )  ( 5  3 5 )  
d a  ( A f c  +  A i - A j ) 2  

where, 
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= 1 f ?}^UTIPU + VT?^IPU + 
d(7 2^, a<T " da " da 

This consists of eigenvalue sensitivity (5.10) and eigenvector sensitivity (5.32) and 

(5.33) which were developed in the previous sections. These sensitivity quantities will 

be used in the sequel to analyze the dependence of the behavior of the critical modes on 

varying exciter parameter settings. 
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6 PROPOSED CONTROL TUNING PROCEDURE 

In the previous chapters several measures of system performance are presented. These 

will be applied to tune the control to obtain better system performance. The systematic 

procedure for the control tuning is presented here. 

6.1 A. Determination of Critical Modes 

At first the critical modes need to be identified. The critical modes include the 

inertial modes which are the poorly damped, low frequency interarea modes with high 

nonlineaxity and the control modes which represent the effect of the controllers on the 

system. These are determined as follows: 

1. Data preparation: In order to develop the system equations at the post disturbance 

equilibrium point, the following data are needed: 

• Power fiow study of the prefault network to determine the bus data such as 

voltage, generation power etc. 

• Dynamic data of generators and controllers 

• Network reduction data (Reduced Y bus matrix) 

• Disturbance simulation: The type and location of disturbance, time of switch­

ings, and the maximum simulation time need to be specified. 

2. Build system equations (3.16) as described in Chapter 3 and determine the equi-

libriimi points Xgp which are the the real roots of the equation (4.1). 
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3. Perform eigenanalysis on the system equations to calculate eigenvalues, left and 

right eigenvectors, and linear participation factors (4.35). 

4. Determine whether the system is stable or not. 

• Stable case: Identify the poorly damped low frequency interarea modes and 

control modes using linear participation factors. 

• Unstable case: In order to find a stable equilibrium point, we need to change 

the controller setting. Eigenvalue sensitivity (5.10) provides the information 

for finding the control law. If this sensitivity is positive (negative), adjust the 

corresponding gain setting to lower (higher) values to obtain a stable system. 

Then go back to step A. 2 with difierent controller setting. 

5. Perform normal form calculations to get the Hessian matrix, h2 coefficients (4.16), 

and obtain the initial conditions, Xo, Yo, and Zo (see Appendix A.l for details). 

6. Calculate the nonlinear interaction index (U) (4.30). The size of these measures 

provides the degree of modal interaction at each mode. This is used to identify 

the mode with the dominant modal interaction. Most of control modes have large 

nonlinear interaction index values since they are interacting with the other modes 

strongly. Therefore we could find the critical inertial modes which can influence 

system dynamic performance considerably among non-control modes. 

7. Calculate 2"'' order interaction coefficients (4.34) at the critical modes in order to 

find the control modes with modal interactions with those modes. Also, we need 

to apply this step to the control modes which have the modal interactions with 

the critical modes to find the indirect interactions with the critical modes. 

8. Find the controllers which participate in the modal interaction (combination mode) 

at the critical inertial modes and control modes. The nonlinear participation 
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factors (4.37) can be used to identify the control states which can control the 

combination modes. 

6.2 B. Control Tuning Procedure 

The detailed control tuning procedure based on the results of step A is presented in 

this section. 

1. Compute the sensitivity of the normsd form coeflBcients of the identified critical in-

ertial modes with respect to the control parameter of the controller. The sensitivity-

value determines the influence of the parameter changes on the nonlinear behav­

ior of system, hence it provides a guide to control tuning to reduce the nonlinear 

modal interactions at the critical inertia! modes. At first we need to determine 

the combination modes wiiich have large sensitivity values and strong interactions 

with the critical inertia! modes. We then need to identify the control states to be 

controlled using nonlinear participation factors . 

2. For the selected control states identified in the previous step, find an appropriate 

control law to reduce the nonlinearity of the critical inertia! modes based on the 

sensitivity of the eigenvalues and normal form coefficients. 

3. Among different controller settings that result in similar stability behavior of the 

critical inertia! modes, choose the one with lower nonlinearity index (12) for the 

critical inertia! modes. The index 12 is a measure of the relative size of the non-

linearity in the initial value and represents the normalized severity by nonlinear 

interaction and is used to find the optimal case among several cases. 

Figure 6.1 shows the flow chart of proposed control tuning procedure. 

The procedure proposed is tested on the model of a realistic stressed power system 

and the numerical results are presented in chapter 7. 
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Figure 6.1 Flow chart for control tuning 
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7 NUMERICAL RESULTS 

7.1 The Test System 

The SO-generator, 145-bus system is used to provide the mmierical results, and this 

system demonstrates a wide range of dynamic characteristics at different loading lev­

els [32]. Figure 7.1 shows the major part of the 50-generator system. 

In our case six machines are represented by the two-axis model and eqmpped with 

exciters and the others are represented by the classical model. The exciter data for these 

six generators is given in Table 7.1. The machine data is given in Table 7.2 on a 100 

MVA base and the six generators with the two-axis representation are placed at the top 

of the table. The power flow bus data is presented in Appendix B. 

Table 7.1 50-generator system exciter data 

Number ka ta tc tb Tr epdmat ^fdmin 
93 120 0.020 1.0 10.0 0.01 8.89 -2.0 

104 200 0.015 1.0 10.0 0.01 8.86 -7.0 
105 50 0.468 1.0 10.0 0.01 7.38 -0.0 
106 50 0.468 1.0 10.0 0.01 7.38 -0.0 
110 120 0.020 1.0 10.0 0.01 8.89 -2.0 
111 200 0.015 1.0 10.0 0.01 8.86 -7.0 
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#20 #26 

Figure 7.1 The study area of 50-generator system 
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Table 7.2 50-generator system machine data 

Machine #  Bus #  H ( s )  x^jpu) x„{jpu) Xdipu) Xg(pu) xi(jm) Tj^js) r^Js) 
1 93 115.04 0.0240 
2 104 73.85 0.0122 
3 105 84.39 0.0208 
4 106 56.26 0.0312 
5 110 115.05 0.0240 
6 111 73.85 0.0122 
7 60 1.41 0.4769 
8 67 52.18 0.0213 
9 79 6.65 0.1292 
10 80 1.29 0.6648 
11 82 2.12 0.5291 
12 89 20.56 0.0585 
13 90 0.76 1.6000 
14 91 1.68 0.3718 
15 94 17.34 0.0839 
16 95 5.47 0.1619 
17 96 2.12 0.4824 
18 97 5.49 0.2125 
19 98 13.96 0.0795 
20 99 17.11 0.1146 
21 100 7.56 0.1386 
22 101 12.28 0.0924 
23 102 78.44 0.0135 
24 103 8.16 0.1063 
25 108 30.43 0.0248 
26 109 2.66 0.2029 
27 112 12.28 0.0924 
28 115 97.33 0.0024 
29 116 105.50 0.0022 
30 117 102.16 0.0017 
31 118 162.74 0.0014 
32 119 348.22 0.0002 
33 121 116.54 0.0017 
34 122 39.24 0.0089 
35 124 116.86 0.0017 
36 128 503.87 0.0001 
37 130 230.90 0.0010 
38 131 1101.72 0.0001 
39 132 120.35 0.0016 
40 134 802.12 0.0003 
41 135 232.63 0.0008 
42 136 2018.17 0.0001 
43 137 469.32 0.0004 
44 139 2210.20 0.0001 
45 140 899.19 0.0003 
46 141 1474.22 0.0001 
47 142 950.80 0.0003 
48 143 204.30 0.0023 
49 144 443.22 0.0004 
50 145 518.08 0.0018 

0.03655 0.09842 0.09673 0.01237 8.50 1.24 
0.01440 0.10160 0.09820 0.00810 10.00 1.50 
0.03149 0.11440 0.10920 0.01102 6.61 1.50 
0.04720 0.17165 0.16377 0.01653 6.61 1.50 
0.03655 0.09842 0.09673 0.01237 8.50 1.24 
0.01440 0.10160 0.09820 0.00810 10.00 1.50 
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7.2 Base Case Study (Case I): Ka(Biis #104 & 111) = 200, 

Ka(Biis #105 &: 106) = 50 

In this section we apply the proposed control tuning procedure to the test system 

described in the previous section. The base case with the exciter setting of Table 7.1 is 

analyzed and its result is presented here. 

7.2.1 Linear Analysis 

Eigenanalysis on the base case gives eigenvalues, eigenvectors, and linear participa­

tion factors. The information of linear participation factors identifies two low frequency 

inertial modes among poorly damped modes, namely modes 95 and 97. The eigenvalues 

of these modes are given in Table 7.3 (and all of the eigenvalues are given in Table 7.4). 

Table 7.3 Eigenvalues of low frequency modes: Case 1 

Low frequency inertial mode Eigenvalues 
95 -0.00329 ±;2.05431 
97 -0.00251 ±;1.89205 

We will concentrate on these modes and their interaction with control modes through­

out this section. Table 7.5 shows the states participating in the important modes. We 

classify the states into two groups; machine and exciter states. The 'xe..' followed by 

machine number represents exciter states which are Epo- , xei- or xe2- of the ma­

chine, and the others are machine states which are represented by 'x..'. The machine 

number is given in Table 7.1. 

From Table 7.5 we see that mode 95/96 is an interarea mode since the states which 

participate in this mode belong to generators electrically far away from each other. 

Modes 101/102 and 103/104 are control modes since their dominant participating states 

are exciter states, and mode 101/102 is the control mode dominated by the Bus #105 

& 106 exciters and mode 103/104 is dominated by the Bus #104 & 111 exciters. The 
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Table 7.4 Eigenvalues (rad/sec) for Case 1 

Mode Eigenvalue Mode Eigenvalue Mode Eigenvalue 

1 -0.011 + J19.041 44 -0.026 -;9.991 87 -0.002 +i3.967 
2 -0.011 -yi9.041 45 -0.015 + i9.623 88 -0.002-i3.967 
3 -0.861 + J 18.089 46 -0.015 -;9.623 89 -0.003 + J3.684 
4 -0.861 -J18.089 47 -0.126 + i9.291 90 -0.003-;3.684 
5 -0.013+J15.831 48 -0.126-J9.291 91 -0.010 +;3.026 
6 -0.013-J15.831 49 -0.075 +;9.087 92 -0.010-i3.026 
7 -0.018+ il5.235 50 -0.075 - J9.087 93 -0.008+;2.817 
8 -0.018-;15.235 51 -0.013 + J8.664 94 -0.008-j2.817 
9 -0.739 +J14.303 52 -0.013 - J8.664 95 -0.003 +i2.054 

10 -0.739-J14.303 53 -0.102 + J8.364 96 -0.003-J2.054 
11 -0.837 +J14.364 54 -0.102 - J8.364 97 -0.003 + il.892 
12 -0.837-J14.364 55 -0.211 +i8.395 98 -0.003 -;1.892 
13 -0.010+J13.435 56 -0.211 -i8.395 99 -1.952+J0.140 
14 -0.010 - il3.435 57 -0.356+J8.164 100 -1.952-y0.140 
15 -0.505+J12.936 58 -0.356 -;8.164 101 -1.779 +J0.075 
16 -0.505 - J12.936 59 -0.028 + J8.221 102 -1.779-jO.075 
17 -0.037 + J12.317 60 -0.028 -i8.221 103 -0.702 +J0.928 
18 -0.037 - J12.317 61 -0.121 + J8.037 104 -0.702-jO.928 
19 -0.042+jll.809 62 -0.121 -;8.037 105 -0.443+70.632 
20 -0.042-jll.809 63 -0.075 + ;8.045 106 -0.443-jO.632 
21 -0.102 + ill.708 64 -0.075-i8.045 107 -0.381 +;0.583 
22 -0.102-ill.708 65 -0.515 + J7.346 108 -0.381-jO.583 
23 -0.009+J11.347 66 -0.515-;7.346 109 -0.227 + y0.517 
24 -0.009-jll.347 67 -0.002+J7.695 110 -0.227-i0.517 
25 -1.563+J9.965 68 -0.002-;7.695 111 -0.295 + jO.403 
26 -1.563-J9.965 69 -0.171 + J7.477 112 -0.295-jO.403 
27 -0.126 + jlO.948 70 -0.171 -J7.477 113 -0.200+;0.396 
28 -0.126 -jlO.948 71 -0.022 + ;7.270 114 -0.200-;0.396 
29 -0.161+jlO.951 72 -0.022 -;7.270 115 -0.010 
30 -0.161 - ilO.951 73 -0.057+J7.148 116 -1.315 
31 -0.014 + il0.58G 74 -0.057-J7.148 117 -1.461 
32 -0.014-jlO.580 75 -0.014 + J7.054 118 -2.274 
33 -0.200 + jlO.650 76 -0.014-J7.054 119 -2.889 
34 -0.200 -jlO.650 77 -0.050 + j6.697 120 -100.004 
35 -0.581 +il0.444 78 -0.050 - J6.697 121 -48.630 
36 -0.581-ilO.444 79 -0.200 + J6.274 122 -100.006 
37 -0.500 + ilO.573 80 -0.200 -i6.274 123 -49.318 
38 -0.500-jlO.573 81 -0.033 + y5.219 124 -100.340 
39 -0.327+ il0.534 82 -0.033 - J5.219 125 -100.658 
40 -0.327-ilO.534 83 -0.141 + i5.120 126 -101.106 
41 -0.356 +il0.520 84 -0.141 - J5.120 127 -101.666 
42 -0.356-jlO.520 85 -0.006+;4.769 128 -64.974 
43 -0.026 + i9.991 86 -0.006-J4.769 129 -64.122 
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Table 7.5 Participating states: Case 1 

Mode Participating states 
95 x50,x44,x43,x42,x48pc36,x38,x40,x5,xl 
97 x43,x50,x44,x42,x36 

101 xe3,x3,xe4,x4 
103 xe2,x2,xe6,x6,xel 
116 x5 ,xl ,x3,xe5 ,xel ,x4,xe2 

control mode 116 shows participating states from both exciters. It is important to notice 

that modes 95 and 97 show no substantial participation of exciter states, and that modes 

101, 103, and 116 have no participation of the inertial modes 95 and 97. Therefore, on 

this level of linear analysis it is not possible to predict the influence of the control settings 

on the important inertial modes. In order to understand, how the exciter gains influence 

the eigenvalues of modes 95 and 97, we compute their eigenvalue sensitivity with respect 

to Ka (Bus #104 & 111) and Ka (Bus #105 & 106). The results are shown in Table 7.6. 

The linear sensitivity analysis indicates that the real part of mode 95 is affected more by 

the gain settings of the exciters at Bus #104 & 111 than Bus #105 & 106 as seen by the 

higher value of the eigenvalue sensitivity. Increasing the gain will push the eigenvalue 

into the right half plane. 

Table 7.6 Eigenvalue sensitivity: Case 1 

Mode Ka of Bus #104&111 Ka of Bus #105&:106 
95 0.966e-4+j0.728e-4 0.709e-4-j0.908e-4 
97 0.295e-4+j0.279e-4 0.271e-4-j0.297e-4 

7.2.2 Observation of Eigenvalue Sensitivity 

We express the dependence of the eigenvalues on Ka (Bus #104 & 111) and Ka 

(Bus #105 & 106) as a linear function, using the values from Tables 7.3 and 7.6. This 

corresponds to the first order term in the Taylor expansion of the eigenvalues as functions 

of Ka. We obtain for the real part of mode 95 as a function of Ka (Bus #104 & 111) : 
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Table 7.7 Eigenvalue dependence of modes 95&97: Casel 

Ka linear sensitivity full system 
mode 95 mode 97 mode 95 mode 97 

200 50 -0.003289 -0.002513 -0.003289 -0.002513 
180 50 -0.005221 -0.003103 -0.005344 -0.003169 
200 45 -0.003646 -0.002646 -0.003636 -0.002644 
240 50 0.000572 -0.001334 0.000046 -0.001594 
200 60 -0.002582 -0.002239 -0.002545 -0.002224 

Xn = 0.0000966 * K a -  0.02260 

and as a function of Ka (Bus #105 & 106): 

X p  = 0.0000709 * K a -  0.006836 

Table 7.7 shows some values of these functions, and the true values obtained from 

the analysis of the nonlinear system with corresponding gain settings. 

On the level of linear sensitivity of the real parts of the eigenvalue it can be seen 

that mode 95 is more sensitive to exciter gain changes than mode 97. The influence of 

both exciters is of similar magnitude in both modes. From these data it is not clear, 

via which mechanism the exciters influence the critical inertial modes, nor is it clear, 

which exciters have dominant influence. A comparison of Figures 7.2 and 7.3 shows 

that the real parts of the eigenvalues of mode 95 depend as concave functions on Ka 

(Bus #104 & 111), hence the linear analysis underestimates the stability reserve of the 

system, while they depend as convex functions on Ka (Bus #105 ic 106), i.e., the linear 

analysis overestimates the stability reserve in this case. The following analysis based on 

2"^ order normal forms will explain these phenomena. 

7.2.3 Nonlinear Analysis 

The nonlinear interaction index II (4.30) for the important inertial and control modes 

is given in Table 7.8. Modes 95 and 97 are identified as the critical low frequency modes 
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Table 7.8 Nonlinear interaction index II: Case 1 

Mode Nonlinear interaction index 11 Rank 
95 4.361 13 (2) 
97 4.410 11 (1) 

101 12.128 7 
103 12.297 5 

(rank 1 and 2 among these modes), and modes 103 and 101 are the important control 

modes with participating states dominated by the respective exciters at Bus #104 & 

111, and Bus #105 & 106. 

The 2'"' order interaction coefficients identify those modes that contribute most to 

the nonlinear (2"*' order) solution of the critical modes (4.20). These solutions consist of 

two terms, the first shows the (nonlinear) dependence on the initial value Zo, the second 

term account for the nonlinear interaction h2 * Zo * Zo- The corresponding values are 

presented in Table 7.9. 

Table 7.9 Zjo and 2"*^ order interactions: Case 1 

Mode zjo h2li * zko * zio 
95 0.211 Z-141.0 (116,116) 

(101,102) 
(101,116) 
(103,104) 

3.68Z33.6 
2.83Z37.1 
1.64Z-45.6 
0.92Z-165.1 

97 1.801 Z101.9 (116,116) 
(101,102) 
(81,82) 

(103,104) 

2.57Z-94.7 
1.97Z-91.9 
1.40Z34.9 
0.67Z68.7 

101 11.812 Z178.7 (103,104) 
(101.115) 
(116.116) 

4.98Z36.9 
3.09Z-77.9 
3.06Z27.2 

103 7.205 Z-57.6 (103,115) 
(97,104) 
(103,104) 

4.95Z-97.4 
3.03Z146.4 
2.04Z-126.3 

116 7.788 ZO.O (103,104) 
(115,116) 
(116,116) 

7.36Z0.0 
0.62ZO.O 
0.60Z0.0 
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This Table 7.9 identifies the control mode 116 as the dominant interaction mode for 

both inertial modes, followed by the control modes 101 and 103. In order to assess the 

influence of the exciter gains on the behavior of the inertial modes 95 and 97, we look at 

the participation factors and at the sensitivity of the normal form transformation with 

respect to exciter gains. 

Linear participation analysis (Table 7.5) shows that mode 101/102 is dominated by 

the exciters at Bus #105 & 106, mode 103/104 by the exciters at Bus #104 & 111, and 

mode 116 shows participation from both inertial and control modes. The nonlinear 2"'' 

order participating states (4.37) are given in Table 7.10. 

Table 7.10 Nonlinear participating states: Case 1 

Interacting combination mode Participating states 
(116,116) xe2,xe6 
(101,102) xe2,xe3,xe6,xe4 
(103,104) xel,xe6,xe5,xe2 

The interaction mode (116,116) is dominated by the exciters at Bus #104 & 111, 

and even the modes (101,102) and (103,104) show substantial influence of the same 

exciters. This indicates that gain variation at the exciters at Bus #104 & 111 will have 

the greatest influence on the systems nonlinear behavior. This agrees with the (linear) 

eigenvalue sensitivity reported in Table 7.6. 

Sensitivity of the normal form coefficient (5.35) indicates, how fast and in which 

direction the nonlinearity in the system changes depending on exciter gain variation. 

Table 7.11 contains the sensitivities of the 2"*' order coefficients of the inertial modes 

with respect to gain variation at Bus #104 & 111 (Ka2) and Bus #105 & 106 (Ka3). 

Table 7.11 shows that both inertial modes have the largest sensitivity values at 

the combination (or interacting) mode (103, 104) and both are more sensitive to the 

variation of the exciter gain at Ka2 (Bus #104 & 111). The interacting modes that 

are predominantly aflected by the change of Ka2 all contain participating states of the 
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Table 7.11 Sensitivity of the 2"'' order normal form coefficients: Case 1 

Mode 
j 

Modes 
(k,l) 

dh\.i/dKa Mode 
j 

Modes 
(k,l) Rectangular Form Polar Form 

95 (103,104) Ka2 0.78e+0+j0.85e+0 0.12e+lZ47.4 95 (103,104) 
KaS -0.48e+0-j0.92e-l 0.49e+0Z190.9 

95 

(104,118) Ka2 -0.21e-2+j0.41e-l 0.41e-lZ92.9 

95 

(104,118) 
Ka3 -0.13e-l+j0.11e-2 0.13e-lZ175.1 

95 

(103,118) Ka2 -0.51e-l+j0.53e-l 0.7Se-lZ133.9 

95 

(103,118) 
KaS 0.58e-2+j0.22e-l 0.22e-lZ74.8 

95 

(116,116) Ka2 -0.17e-4-j0.22e-4 0.28e-4Z231.7 

95 

(116,116) 
Ka3 0.11e-4-j0.30e-4 0.32e-4Z-69.5 

95 

(101,102) Ka2 -0.50e-4-j0.58e-4 0.77e-4Z229.2 

95 

(101,102) 
Ka3 0.21e-2-j0.28e-2 0.35e-2Z-54.1 

95 

(101,116) Ka2 -0.33e-44-j0.36e-4 0.49e-4Z132.5 

95 

(101,116) 
KaS 0.92e-3-j0.17e-2 0.19e-2Z-61.4 

97 (103,104) Ka2 0.48e+0+j0.92e+0 0.10e+lZ62.4 97 (103,104) 
KaS 0.16e-l+j0.32e-l 0.36e-lZ63.9 

97 

(103,118) Ka2 -0.59e-l-l-j0.48e-l 0.75e-lZ140.8 

97 

(103,118) 
KaS 0.83e-2+j0.25e-l 0.26e-lZ71.4 

97 

(116,116) Ka2 0.12e-5-j0.19e-4 0.19e-4Z-86.6 

97 

(116,116) 
KaS 0.18e-4-j0.34e-4 0.38e-4Z-61.4 

97 

(101,102) Ka2 0.18e-4-j0.64e-4 0.66e-4Z-74.7 

97 

(101,102) 
KaS 0.25e-2-j0.37e-2 0.45e-2Z-55.4 

97 

(81,82) Ka2 -0.36e-3-j0.56e-3 0.666-3Z237.4 

97 

(81,82) 
KaS -0.59e-3+j0.66e-3 0.88e-3Z132.0 



www.manaraa.com

59 

exciters at Bus #104 & 111, hence increasing the gain Ka2 will lead to an increase in 

the nonlinear behavior of the system as shown by the results of Table 7.7, and 7.11. In 

addition we also note that the linear sensitivity analysis does not correctly capture the 

change in stability behavior for the change in exciter settings because of the nonlinearity 

caused by the change. As a result, these cases illustrates the importance of using the 

normal forms analysis to include the effects of the nonlinearity. 

7.3 Case Studies 

According to the results of the base case, increasing the gain Ka2 (Bus #104 & 111) 

wiU cause an increase in the nonlinear behavior of the system. This suggests the next 

case which has the reduced gain Ka2 (Bus #104 & 111). 

7.3.1 Case II : Ka(Bus #104 &: 111) = 180, Ka(Bus #105 & 106) = 50 

Linear analysis (Table 7.12 and 7.13) indicates that mode 95 and 97 are the critical 

inertial modes of oscillation and the system is more stable than Case I as we expected 

from the results of eigenvalue sensitivity. For the linear participating states there are no 

changes to that obtained for Case I. 

The linear sensitivity analysis (Table 7.14) indicates that real part of mode 95 is 

affected more by the gain settings of the exciters at Bus #104 & 111 than at Bus #105 

& 106. This aJso occurred in Case I, but the difference between the values at Bus #104 

&: 111 and Bus #105 & 106 becomes larger; i.e. compared to Case 1, the sensitivity wrt 

Ka (Bus #104 &: 111) has increased and that wrt Ka (Bus #105 & 106) has decreased. 

Table 7.12 Eigenvalues of low frequency modes: Case 2 

Low frequency inertial mode Eigenvalues 
95 -0.00534 ±j2.05296 
97 -0.00317 ±jl.89153 
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Table 7.13 Participating states: Case 2 

Mode Participating states 
95 x44pc43,x42,x50,x48,x36,x38,x40,x5,xl 
97 x43,x50,x44,x42,x36 

101 xe3,x3,xe4,x4 
103 xe2,x2,xe6,x6,xe5 
116 x5 ,xl ,x3 ,xe5 ,xe 1 ,x4,x6 

Table 7.14 Eigenvalue sensitivity: Case 2 

Mode Ka of Bus #104&111 Ka of Bus #105&106 
95 0.109e-3+j0.622e-4 0.697e-4-j0.952e-4 
97 0.361e-4+j0.242e-4 0.265e-4-j0.330e-4 

Table 7.15 Nonlinear interaction index II: Case 2 

Mode Nonlinear interaction index 11 Rank 
95 4.441 13 (2) 
97 5.385 11 (1) 

101 9.708 8 
103 18.781 4 
116 15.389 6 

The nonlinear interaction index II for the important inertia! and control modes is 

given in Table 7.15 and mode 97 is clearly the largest one among the inertial modes. In 

Case I we note that mode 97 and 95 are ranked 1 and 2, but have index II values which 

are very close. 

The 2o and 2"'' order interaction coeflBcients are given in Table 7.16. The effect of the 

combination mode (116,116) on mode 95 is decreased and it is interesting that mode 95 

has a strong interaction with the modes (87,98). Modes 87 and 98 are the inertial modes. 

However, from Table 7.17 we can see the nonlinear participating states of this mode 

include control states of several machines. This means that even though the exciters 

at Bus #104 & 111 are still dominant with respect to nonlinear modal interactions the 

degree of dominance is reduced and the pattern of interaction is different. 

In order to find the dominant exciter associated with the nonlinear modal interac-
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Table 7.16 Zjo and 2"'^ order interactions: Case 2 

Mode zjo 
95 0.297 Z-50.1 (87,98) 

(116,116) 
(95,115) 

3.58Z-42.1 
2.20Z122.4 
1.21Z41.4 

97 1.609 Z-77.7 (97,115) 
(116,116) 
(118,118) 

3.38Z-166.4 
1.55Z-56.5 
0.52Z-48.5 

101 5.751 Z30.5 (101.115) 
(116.116) 
(101,116) 

6.74Z 134.0 
1.77Z-71.9 
0.82Z-22.6 

103 3.216 Z-50.7 (103.115) 
(97,104) 

(116.116) 

10.22Z-94.6 
0.67Z113.5 
0.63Z118.4 

116 5.916 ZO.O (103,104) 
(115,116) 
(116,116) 

8.92Z0.0 
2.31Z180.0 
0.36Z180.0 

Table 7.17 Nonlinear participating states: Case 2 

Interacting combination mode Participating states 
(87,98) xe2 ,xe6,xel ,xe5 ,x50 ,xe3 

(116,116) xe2,xe6,xe5,xel 
(97,115) xe2,xe6,xel 
(101,115) xe2,xe6,xe3,xel 
(103,115) xe6,xe2,xel,xe5 
(103,104) xel,xe6,xe5,xe2 

tions, we perform sensitivity analysis of the 2"'' order normal form coefficients and the 

results are given in Table 7.18. Prom Table 7.18 the normal form coefficients correspond­

ing to the interaction with modal combinations (87,98) and (103,104) have large values 

at both Ka's. We note mode 95 has the larger sensitivity with respect to Ka3 (Bus #105 

&: 106) for the interaction with modes (87,98). These are the combination modes which 

have the largest nonlinear interaction with mode 95 as shown in Table 7.16. 

This suggests the next case at which the gains of exciters at Bus #105 & 106 is 

changed (reduced). The gain is reduced because the linear eigenvalue sensitivity in 

Table 7.14 indicates an improvement in stability with the reduction in gain. 
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Table 7.18 Sensitivity of the order normal form coefficients: Case 2 

Mode 
j 

Modes 
m 

dhiildka Mode 
j 

Modes 
m Rectangular Form Polar Form 

95 (116,116) Ka2 -0.33e-4+j0.58e-4 0.67e-4^119.7 95 (116,116) 
Ka3 -0.44e-4+j0.14e-3 0.15e-3^107.6 

95 

(87,98) Ka2 0.15e+l+j0.15e-l 0.15e+lZ0.56 

95 

(87,98) 
Ka3 -0.93e+0-j0.22eH-l 0.24e+lZ246.9 

95 

(103,104) Ka2 -0.18e+0+j0.18e4"l 0.18e+lZ95.8 

95 

(103,104) 
Ka3 0.20e+l+j0.35e+l 0.40e+lZ60.2 

95 

(101,102) Ka2 -0.80e-2+j0.19e-2 0.83e-2Z166.7 

95 

(101,102) 
Ka3 0.76e+0-j0.94e+0 0.12e+lZ-51.2 

97 (116,116) Ka2 0.19e-6-j0.12e-4 0.12e-4^89.1 97 (116,116) 
Ka3 0.14e-4-j0.25e-4 0.29e-4Z-60.5 

97 

(97,115) Ka2 -0.13e-3-j0.65e-3 0.67e-3Z258.5 

97 

(97,115) 
Ka3 0.39e-4+j0.89e-2 0.89e-2Z89.8 

97 

(103,104) Ka2 0.34e+0+j0.61e+0 0.69e+0z60.9 

97 

(103,104) 
Ka3 -0.41e-3+j0.23e-l 0.23e-lZ9L0 

97 

(101,102) Ka2 0.17e-2-j0.64e-2 0.67e-2Z-75.0 

97 

(101,102) 
Ka3 0.29e+0-j0.42e+0 0.51e+0Z-55.1 

7.3.2 Case III: Ka(Bus #104 & 111) = 180, Ka(Bus #105 & 106) = 46 

As expected, linear analysis (Table 7.19) indicates that the system becomes more 

stable. The results of linear sensitivity analysis (Table 7.20) are similar to Case II, and 

the modes 95&97 are still more sensitive to the exciters at Bus #104 & 111. 

The nonlinear interaction index II for the important inertial and control modes is 

given in Table 7.21 and mode 95 becomes the largest one among the inertial modes. 

Table 7.19 Eigenvalues of low frequency modes: Case 3 

Low frequency inertial mode Eigenvalues 
95 -0.00562 ±i2.05334 
97 -0.00327 ± J 1.89166 

Table 7.20 Eigenvalue sensitivity: Case 3 

Mode Ka of Bus #104&111 KaofBus #105&106 
95 0.108e-03+j0.613e-04 0.670e-04-j0.943e-04 
97 0.359e-04+j0.235e-04 0.250e-04-j0.326e-04 



www.manaraa.com

63 

Table 7.21 Nonlinear interaction index II: Case 3 

Mode Nonlinear interaction index 11 Rank 
95 17.099 10 (1) 
97 7.132 21 (9) 

101 42.931 7 
103 10.760 17 
116 34.238 9 

Table 7.22 Zjo and 2"*^ order interactions: Case 3 

Mode Zjo h2p^i * ̂ ko * Zio 

95 0.495 Z26.7 (116,116) 
(101,116) 
(102,116) 

17.40Z98.9 
16.45Z-139.1 
16.25Z-13.8 

97 7.793 Z7.7 (116,116) 
(101,116) 
(102,116) 

12.26Z48.7 
11.45Z171.0 
11.30Z-63.8 

101 25.370 Z35.8 1 (116,116) 
(101,116) 
(102,116) 

23.55Z-156.6 
19.00Z-34.1 
18.58Z85.0 

103 4.561 Z54.1 (102,116) 
(101,116) 
(116,116) 

6.58Z163.0 
6.48Z36.3 
5.01Z-71.1 

116 16.704 ZO.O (103,104) 
(116,116) 
(65,66) 

17.00Z0.0 
2.87Z180.0 
2.26Z0.0 

Also, the values of the index II increase except for mode 103. 

The Zo and 2"'' order interaction coefficients are given in Table 7.22. The effect 

of combination mode (116,116) on mode 95 is increased and becomes the strongest 

interaction with the critical inertial modes as in Case 1. The reduction of the gains of 

the exciters at Bus #105 & 106 caiises the relative increase of the effects of the exciters 

at Bus #104 & 111 on the system. Also we observe that mode 116 which is included 

in the all interactions of the critical inertial modes and control modes in Table 7.22 has 

strong interaction with modes (103,104). According to Table 7.23, most of the strong 

interactions have the control states of exciters at Bus #104 & 111. 



www.manaraa.com

64 

We now note from Table 7.24 that the normal form coefficients of the inertial modes 

with respect to the modal combination (103,104) has the highest sensitivity w.r.t. change 

of gain at Ka2 (Bus #104&111). In addition both the sensitivity of the real part and 

imaginary part are negative, indicating that an increase in gain will reduce the nonlin-

earity. We proceed to increase the gain of the exciters at Bus #104&:111. 

Table 7.23 Nonlinear participating states: Case 3 

Interacting combination mode Participating states 
(116,116) xe2,xe6,xe5,xel 
(101,116) xe6,xe2,xe5,xel 
(102,116) xe6,xe2,xe5,xel 

Table 7.24 Sensitivity of the 2"'' order normal form coefficients: Case 3 

Mode 
j 

Modes 
(k,l) 

dhydka Mode 
j 

Modes 
(k,l) Rectangular Form Polar Form 

95 (116,116) Ka2 0.21e-4-j0.34e-4 0.40e-4Z-58.6 95 (116,116) 
Ka3 0.90e-4-j0.99e-4 0.13e-3Z-47.6 

95 

(101,116) Ka2 0.21e-3+j0.39e-4 0.21e-3Z10.5 

95 

(101,116) 
Ka3 -0.19e-l-j0.21e-l 0.28e-lZ228.4 

95 

(103,104) Ka2 -0.12e+0-j0.28e+l 0.28e+lZ267.6 

95 

(103,104) 
Ka3 -0.51e+0-j0.21e+l 0.22e+lZ256.3 

97 (116,116) Ka2 0.77e-6-j0.11e-4 0.11e-4Z-86.0 97 (116,116) 
Ka3 0.12e-4-j0.21e-4 0.24e-4Z-60.3 

97 

(101,116) Ka2 -0.14e-44-j0.11e-4 0.18e-4Z142.4 

97 

(101,116) 
Ka3 0.28e-3-j0.21e-2 0.21e-2Z-82.3 

97 

(103,104) Ka2 -0.97e+0-j0.28e+l 0.29e+lZ250.7 

97 

(103,104) 
Ka3 -0.51e-l-j0.88e-l 0.10e+0Z239.9 

7.3.3 Case IV: Ka(Biis #104 & 111) = 240, Ka(Bus #105 & 106) = 46 

Linear analysis (Table 7.25) shows that the system (mode 95) has less damping than 

the previous cases. The results of linear sensitivity analysis (Table 7.26) show that the 

sensitivity of mode 95 to both exciters is similar. From Table 7.27, we observe that 

mode 95 has the largest index II among the inertial modes. 
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Table 7.25 Eigenvalues of low frequency modes: Case 4 

Low frequency inertial mode Eigenvalues 
95 -0.000235 ±j2.05784 
97 -0.001697 ±jl.89333 

Table 7.26 Eigenvalue sensitivity: Case 4 

Mode KaofBus #104&111 Ka of Bus #105&:106 
95 0.701e-4+j0.846e-4 0.691e-4-j0.819e-4 
97 0.170e-4+j0.295e-4 0.253e-4-j0.238e-4 

Table 7.27 Nonlinear interaction index II: Case 4 

Mode Nonlinear interaction index 11 Rank 
95 4.380 9(1) 
97 3.567 12 (2) 

101 17.114 4 
103 19.742 2 
116 1.570 17 

Table 7.28 Zjo and 2™^ order interactions: Case 4 

Mode Zjo h2ii * Zko * Zio 
95 0.154Z-4.5 (87,98) 2.17Z-4.6 

(101,102) 1.08Z110.4 
(102,102) 0.55Z12.9 

97 1.391 Z-73.9 (97,115) 1.88Z-161.1 
(101,102) 0.74Z-106.9 
(102,102) 0.38Z156.4 

101 7.739Z-82.6 (101,115) 11.85Z-165.3 
(103,104) 7.54Z-6.8 
(102,115) 1.62Z50.0 

103 4.504Z-66.6 (103,115) 9.65Z-97.9 
(97,104) 6.23Z142.6 
(103,104) 0.78Z-135.7 

116 1.670Z0.0 (103,104) 0.77ZO.O 
(115,116) O.38Z0.0 
(101,104) 0.18Z-149.2 
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From Table 7.28 and 7.29, we determine that the patterns of nonlinear modal in­

teractions and their participating states are similar to Case 2. Also, we can see from 

Table 7.29 that the exciter states at Bus #104 k, 111 are dominant in these interactions. 

Table 7.30 shows the normeJ form coefficient is more sensitive to the variation at Bus 

#105 & 106 than Bus #104 & 111. In addition, for the most dominant interaction of the 

critical inertial mode 95 with modal combination (87,98) the sensitivity is highest with 

respect to KaS (Bus #105 & 106) and is negative on both the real and imaginary parts 

indicating that an increase in gain will reduce the nonlinear interaction. We proceed to 

the next case in which we increase the gain of the exciters at Bus #105 & 106. 

Table 7.29 Nonlinear participating states: Case 4 

Interacting combination mode Participating states 
(87,98) xe2,xe6,xel,x50,xe5 

(101,102) xe2,xe6,xe3,xe4,xel,xe5 
(103,104) xe2,xe6,xel,xe3 
(102,102) xe2,xe6,xe3,xe4,xel,xe5 

Table 7.30 Sensitivity of the 2^ order normal form coefficients: Case 4 

Mode 
j 

Modes 
(k,l) 

dhiJdKa Mode 
j 

Modes 
(k,l) Rectangular Form Polar Form 

95 (87,98) Ka2 0.92e+0-t-j0.886+0 0.13e+lZ43.9 95 (87,98) 
KaS -0.70e+0-j0.20e+l 0.22e+lZ251.2 

95 

(101,102) Ka2 0.20e-l+j0.17e-l 0.27e-lZ40.6 

95 

(101,102) 
KaS -0.15e+01-j0.46e+l 0.49e+lZ251.9 

95 

(102,102) Ka2 -0.28e-l-j0.15e-l 0.32e-lZ207.6 

95 

(102,102) 
KaS 0.58e+l-j0.14e+l 0.59e+lZ-13.5 

95 

(116,116) Ka2 0.38e-4+j0.62e-4 0.73e-4Z58.S 

95 

(116,116) 
KaS 0.16e-3+j0.17e-S 0.24e-SZ47.S 

97 (97,115) Ka2 -0.S6e-4+j0.11e-2 0.11e-2Z91.8 97 (97,115) 
KaS 0.28e-l-j0.68e-2 0.29e-lZ-13.7 

97 

(101,102) Ka2 0.15e-2-j0.46e-2 0.49e-2Z-72.2 

97 

(101,102) 
KaS 0.17e+0-j0.24e+0 0.29e+0Z-55.4 

97 

(102,102) Ka2 -0.28e-2+j0.98e-2 0.10e-lZ106.1 

97 

(102,102) 
KaS 0.14e+l-j0.10e+l 0.17e+lZ-S7.4 

97 

(116,116) Ka2 0.16e-5-j0.15e-4 0.15e-4Z-84.2 

97 

(116,116) 
KaS 0.11e-4-j0.2Se-4 0.25e-4Z-6S.7 
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7.3.4 Case V : Ka(Bus #104 & 111) = 240, Ka(Bus #105 &: 106) = 48 

For the linear part of the analysis, we again present the eigenvalues and the eigenvalue 

sensitivities for the important inertial modes 95 and 97, see Tables 7.31, 7.32, and 7.33. 

Table 7.31 shoves the dampings of both modes 96 & 97 are decreased considerably from 

the base case. The linear sensitivity of the eigenvalues indicates that the change on 

mode 95 for the change in gain settings is more or less similar. 

Table 7.31 Eigenvalues of low frequency modes: Case 5 

Low frequency inertial mode Eigenvalues 
95 -0.00010 ±;2.05768 
97 -0.00165 ±^1.89328 

Table 7.32 Participating states: Case 5 

Mode Participating states 
95 x50,x44,x43,x42,x48,x36,x38,x40,x5,xl 
97 x43,x50,x44,x42,x36 

101 xe3pc3,xe4,x4 
103 xe2pc2,xe6,x6,xel 
116 x5,xl,x3,xe5,xel,x4,xe2 

Table 7.33 Eigenvalue sensitivity: Case 5 

Mode Ka of Bus #104&:111 Ka of Bus #105&106 
95 0.701e-4+j0.850e-4 0.703e-4-j0.822e-4 
97 0.169e-5+jG.298e-4 0.259e-4-j0.238e-4 

Table 7.34 shows the nonlinearity index II for the critical modes, and the index II 

for mode 95 is clearly larger than that for mode 97. Again, from Table 7.35 modal 

combination (116,116) is the dominant interacting control mode, and this is similar to 

Case 2 (Table 7.16). We note that we have considerably reduced the magnitude of the 

nonlinear terms. 
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Table 7.34 Nonlinear interaction index II: Case 5 

Mode Nonlinear interaction index 11 Rank 
95 1.798 16 (1) 
97 1.220 26 (2) 

101 7.309 7 
103 14.961 3 

Table 7.35 Zjo and 2"^ order interactions: Case 5 

Mode zjo h2 f̂.i * zko * zio 
95 0.141Z-89.3 (87,98) 

(116,116) 
(103,118) 

0.95Z-95.8 
0.81Z23.9 
0.22Z114.0 

97 0.983Z175.6 (116,116) 
(97,115) 

(103,104) 

0.56Z-59.2 
0.46Z-91.5 
0.14Z109.9 

101 1.641Z148.4 (103,104) 
(116,116) 
(101,115) 

3.71Z117.1 
0.87Z98.7 
0.60Z-110.6 

103 3.853Z-48.2 (97,104) 
(103,115) 
(103,104) 

6.50Z-18.4 
2.87Z-79.8 
0.57Z-33.2 

116 3.786^:0.0 (103,104) 
(115,116) 
(116,116) 

0.56Z0.0 
0.30Z0.0 
0.13Z0.0 
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7.4 Finding Optimal Case 

The final step in our analysis is to examine the different change cases and determine 

the nonlinearity index 12. This will provide us a measure of the effect of the control 

tuning on the nonlinearity introduced and provide a metric for selecting the appropriate 

setting. 

Table 7.36 Eigenvalues and interaction coefficients of mode 95 

Case Ka's Re(A) max(h2zz) ^30 12 
I 200 50 -0.00329 3.68 0.211 17.41 
II 180 50 -0.00534 3.58 0.297 12.08 
III 180 46 -0.00562 17.40 0.495 35.13 
IV 240 46 -0.00024 2.17 0.154 14.09 
V 240 48 -0.00010 0.95 0.141 6.75 

Table 7.37 Eigenvalues and interaction coefficients of mode 97 

Case Ka's Re(A) max(h2zz) \zjo\ 12 
I 200 50 -0.00251 2.57 1.801 1.43 
II 180 50 -0.00317 3.38 1.609 2.10 
III 180 46 -0.00327 12.26 7.793 1.57 
IV 240 46 -0.00170 1.88 1.391 1.35 
V 240 48 -0.00165 0.56 0.983 0.57 

Prom Tables (7.36 and 7.37) we note that for the inertial modes the index 12 in the 

last colunm is lowest for the case where the nonlinearity in the system is the smallest. 

This corresponds to Case 5 where Ka (Bus #104 & 111) = 240, and Ka (Bus #105 

& 106) = 48. This nonlinearity index (12) compares the magnitude of the largest 2"*^ 

order term in comparison to the linear term. The terms used to calculate the index 12 

are the coefficients which appear in the closed form solution obtained from the normal 

form analysis. These terms reflect the inherent structural characteristics of the system. 

We note that at the setting at which the nonlinear index 12 is the least for the inertial 

modes, the damping is not the highest. Actually Case 3 has the highest damping. This 
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design procedure uses the size of the nonlinear term as a criterion for design. It could 

be refined to include a trade-off between nonlinearity and damping using appropriate 

weighting factors. 

7.5 Time Domain Simulation Results 

For nonlinear systems time domain simulation is an important complement to ana­

lytical tools in determining whether such specifications are met. Nonlinear time domain 

simulations are performed for the cases which are analyzed in the previous sections in 

this section. 

7.5.1 Comparison of Stability Margin 

We now compare the control settings for Case 1, Case 3 and Case 5 using nonlinear 

time simulation: For a 3-phase stub fault at Bus #7 cleared at 0.108 second we obtain 

the stability limit in terms of the plant generation at Bus #93 & 110. We note that 

Case 1 (Ka of Bus #104 & 111 = 200, Ka of Bus #105 & 106 = 50) and Case 3 (Ka 

of Bus #104 & 111 = 180, Ka of Bus #105 &c 106 = 46) give a limit of 3200 MW and 

3170 MW respectively, and Case 5 (Ka of Bus #104 & 111 = 240, Ka of Bus #105 & 

106 = 48) provides a limit of 3260 MW at generation of Bus #93 & 110. This clearly 

indicates the inclusion of the nonlinear effects in the control design provides a higher 

transient stability limit. The relative angle plots of generator at Bus #93 are shown in 

Figures 7.4, 7.5, 7.6, and 7.7 according to the total generation of generators at Bus #93 

& 110. 

From the time simulation results we find the optimal control tuning from the proposed 

procedure gets better control performance, i.e. the control performance is not affected 

much by existing nonlinearity. 
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Figure 7.4 Comparison of angle plot of generator at Bus #93 " 
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Figure 7.5 Comparison of angle plot of generator at Bus #93 ' 

"When the total generation at Bus #93 & 110 is 3150MW 
'When the total generation at Bus #93 & 110 is 3170MW 
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Figure 7.6 Compaxison of angle plot of generator at Bus #93 
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Figure 7.7 Comparison of angle plot of generator at Bus #93 

®When the total generation at Bus #93 & 110 is 3200MW 
'When the total generation at Bus #93 & 110 is 3260MW 
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7.5.2 Effect of Change of Fault Location on Control Tuning 

This section deals with the effect of change of fault location on control tuning. This 

could determine whether the control tuning from the proposed procedure at one fault 

location is valid for another case in which the fault location is different. In this section, 

we perform nonlinear time simulation for the case in which the fault occurs at Bus #1 

and cleared at 0.108 second, and compare the control settings for Case 1, Case 3, and 

Case 5 in terms of the plant generation at Bus #93 & 110 as in the previous section. 

Case 1 (Ka of Bus #104 & 111 = 200, Ka of Bus #105 & 106 = 50) and Case 3 (Ka 

of Bus #104 & 111 = 180, Ka of Bus #105 & 106 = 46) give a limit of 3320 MW and 

3280 MW respectively, and Case 5 (Ka of Bus #104 & 111 = 240, Ka of Bus #105 & 

106 = 48) provides a limit of 3340 MW, and the relative angle plots of generator at Bus 

#93 are shown in Figures 7.8, 7.9, 7.10, and 7.11. 

Therefore, we may say the control settings to reduce the nonlinear interaction at 

the specific fault location could be applied to other cases at different fault locations, 

even though the initial conditions (xo, Yo, and Zg) are changed as the location of the 

disturbance is different. 



www.manaraa.com

74 

1 [ • 1 1 1 1 

. :3260MW(200<-50) 

:3260MW(180+4Q 

... .•3260MW(240+48) : 

• • • - i- ; -

-

: *%\> 
*• 

*• N. '  ̂
^ \ N 

V. \\ > .• 

3 4 
Titne 

Figure 7.8 Comparison of angle plot of generator at Bus #93 ® 
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Figure 7.9 Comparison of angle plot of generator at Bus #93 ^ 

"When the total generation at Bus #93 & 110 is 3260MW and fault is at Bus # 1 
^When the total generation at Bus #93 & 110 is 3280MW and fault is at Bus # 1 
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Figure 7.10 Comparison of angle plot of generator at Bus #93 " 
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Figure 7.11 Comparison of ajigle plot of generator at Bus #93 ^ 

"When the total generation at Bus #93 & 110 is 3320MW and fault is at Bus # 1 
'When the total generation at Bus #93 & 110 is 3340MW and fault is at Bus # 1 
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8 CONCLUSIONS 

This work develops the analytical basis for tuning controls (exciter settings) in power 

systems using the nonlinear information provided by the method of normal forms. The 

technique developed is based on using indices to identify control modes which interact 

nonlinearly with inertial modes. The concept of nonlinear participation factors, and 

sensitivity of the normal forms coeflficient, together with linear participation factors and 

eigenvalue sensitivity are used to vary control settings. The control settings are varied 

to obtain improved stability and to reduce the nonlinearity in the system. 

The results on a sample test system, demonstrate the importance of including the 

effect of the second order nonlinear terms in the analysis. The results provided also 

indicate some of the shortcomings of the linear approach, and illustrate the nature of 

the added information provided by the higher order terms. The nonlinear interaction 

index II clearly identifies the control modes interacting with the inertial modes, and 

the use of the nonlinear participation factors provided information regarding the states 

participating in the interacting modes. The sensitivity of the nonlinear coefficients to 

the identified control parameters provides information on the changes to the settings to 

reduce nonlinearity and improve stability. 

The results obtained lead to the following conclusions: 

• Linear eigenvalue and sensitivity analysis correctly indicate the direction in which 

exciter gains have to be tuned to stabilize or destabilize a system. They do not 

indicate, however, how far the exciter gain can be tuned to maintain stability. 
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• The nonlineax interaction index (II) accurately identifies the dominant inertial 

modes and control modes. 

• The 2^^ order interaction coefficients and nonlinear participating states identify 

those control modes that influence the nonlinear behavior of the inertial modes. 

• Sensitivity of the 2"^ order normal form coefficients determines the control param­

eters that have dominant influence on the stability behavior of the inertial modes. 

These sensitivities provide a clear indication of control tuning that gives better 

system performance. 

• Changing the exciter gains in a system can change the relative influence of the 

control settings on the system, compare Case 4 and Case 5. Even quite small 

changes in one exciter gain can result in another exciter having dominant influence 

at the resulting control setting. 

• The procedure developed accurately identifies the mechanism of control interac­

tion, and allows for changing control settings. These changes are based on a 

systematic analysis of the structural characteristics of the system. 

• The nonlinearity index (12) identifies the severity of nonlinearity for the stable 

system and can be used to find optimal setting. 

• The inclusion of the nonlinear eSects in control design provides a higher transient 

stability limit. 

Based on the experience of this research work, the following suggestions are made 

for further research work: 

• Control tuning procedure using the sensitivity of normal form coefficients is based 

on system structure. Since system performance depends on system structure and 
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on initial values, the way to incorporate the sensitivity of initial values needs to 

be developed for better control tuning. 

• For an unstable case where the analysis need to be performed around an Unstable 

Equilibrium Point (UEP), this work will not always convey the complete picture. 

This requires a more detailed bifurcation analysis. 

• From the view point of numerical analysis the programs which are used for this 

work have been optimized by eliminating unneeded stores, overlapping operations, 

and doing operator strength reduction. However the code for this work needs to 

be improved to reduce the storage memory and calculation speed. It needs about 

57 Mbytes for the storage of h2 coeflBcients, and comparing each run time of whole 

computation tells the calculation of Zg takes more than 80 % of whole nm time. We 

suggest the parallelization of Zq calculation and the fast calculation of z© enables 

main program to incorporate the subroutine for Zo- Then h2 coefficients don't 

need to be stored separately. In the appendices a sample program for calculation 

of Zo using a parallelized code is presented. 

• Analytical methods for optimal control are suggested to evaluate the stability 

and nonlinear modal interactions of a system quantitatively and minimize (or 

maximize) them. 
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APPENDIX A DETAILS OF SOLVING z„ 

A.l Procedure for Solving Zo 

To determine we need to obtain Xo and Yo and the procedure is as follows: 

1. The initial condition Xo = Xci — x^^p, where Xc/ is the system condition at the 

time of fault clearing and can be obtained by time simulation, and xj^p is defined 

in chapter 4. 

2. Using the transformation x = Uy, we get Yo 

where U and V are the matrix of right and left eigenvectors respectively. 

3. According to the equation (4.16), the relation between x^ and Yo is 

yo = U ^Xo = V^Xo (A.1) 

y = z + h2(z) (A.2) 

where, 

N N 

'^'W = EE''Wi 0 = 1,2, ....AT) 
Jk=l 1=1 

Therefore, z<, is the solution of following equation. 

f(z) = -y + z + h2(z) (A.3) 
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In order to solve the nonlinear equation (A.3), we use a modijScation of the 

levenberg-marquEirdt algorithm and this subroutine is explained in the next sec­

tion. 

A.2 Subroutine for Solving Zo 

In order to solve Zo we used a subroutine Imdif [33], and the purpose of Imdif is to 

minimize the sum of the squares of m nonlinear functions in n variables by a modification 

of the levenberg-marquardt algorithm. For this program we must provide a subroutine 

which calculates the functions. The Jacobian is then calculated by a forward-dijSerence 

approximation. The subroutine statement is as follows: 

subroutine lmdif(fcn, m, n, x, fvec, ftol, xtol, gtol, maxfev, epsfcn, diag, mode, factor, 

nprint, info, nfev, Qac, Id^ac, ipvt, qtf, wal, wa2, wa3, wa4) 

where 

• fen is the name of the user-supplied subroutine which calculates the functions, fen 

must be declared in an external statement in the user calling program, and should 

be written as follows. 

subroutine fcn(m, n, x, fvec, iflag) 

integer m, n, iflag 

double precision x(n), fvec(m) 

calculate the functions at x and return this vector in fvec. 

return 

end 
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The value of iflag should not be changed by fen unless the user wants to terminate 

execution of Imdif. In this case set iflag to a negative integer. 

m is a positive integer input variable set to the number of functions. 

n is a positive integer input variable set to the number of variables, and n must 

not exceed m. 

X is an array of length n. On input x must contain an initial estimate of the 

solution vector. On output x contains the final estimate of the solution vector. 

fvec is an output array of length m which contains the functions evaluated at the 

output X. 

ftol is a nonnegative input variable. Termination occurs when both the actual and 

predicted relative reductions in the sum of squares are at most ftol. Therefore, ftol 

measxxres the relative error desired in the simi of squares. 

xtol is a nonnegative input variable. Termination occurs when the relative error 

between two consecutive iterates is at most xtol. Therefore, xtol measures the 

relative error desired in the approximate solution. 

gtol is a nonnegative input variable. Termination occurs when the cosine of the 

angle between fvec and any column of the Jacobian is at most gtol in absolute 

value. Therefore, gtol measures the orthogonality desired between the function 

vector and the columns of the Jacobian. 

maxfev is a positive integer input variable. Termination occurs when the number 

of calls to fen is at least maxfev by the end of an iteration. 

epsfcn is an input variable used in determining a suitable step length for the 

forward-difference approximation. This approximation assimies that the relative 
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errors in the functions are of the order of epsfcn. If epsfcn is less than the machine 

precision, it is assumed that the relative errors in the functions are of the order of 

the machine precision. 

diag is an array of length n. If mode = 1 (see below), diag is internally set. If mode 

= 2, diag must contain positive entries that serve as multiplicative scale factors 

for the variables. 

mode is an integer input variable. If mode = 1, the variables will be scaled in­

ternally. If mode = 2, the scaling is specified by the input diag. Other values of 

mode are equivalent to mode = 1. 

factor is a positive input variable used in determining the initial step bound. This 

bound is set to the product of factor and the Euclidean norm of diag*x if nonzero, 

or else to factor itself. In most cases factor should lie in the interval (.1,100.). 100. 

is a generally recommended value. 

nprint is an integer input variable that enables controlled printing of iterates if it 

is positive. In this case, fen is called with iflag = 0 at the beginning of the first 

iteration and every nprint iterations thereafter and immediately prior to return, 

with X and fvec available for printing. If nprint is not positive, no special calls of 

fen with iflag = 0 are made. 

info is an integer output variable. If the user has terminated execution, info is set 

to the (negative) value of iflag. (see description of fen) Otherwise, info is set as 

follows. 

— info = 0: improper input parameters. 

— info = 1: both actual and predicted relative reductions in the sum of squares 

are at most ftol. 
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- info = 2: relative error between two consecutive iterates is at most xtol. 

- info = 3: conditions for info = 1 and info = 2 both hold. 

- info = 4: the cosine of the angle between fvec and any column of the Jacobian 

is at most gtol in absolute value. 

- info = 5: number of calls to fen has reached or exceeded maxfev. 

- info = 6: ftol is too small, so no further reduction in the sum of squares is 

possible. 

- info = 7: xtol is too small, so no further improvement in the approximate 

solution X is possible. 

- info = 8: gtol is too small, so fvec is orthogonal to the columns of the Jacobian 

to machine precision. 

nfev is an integer output variable set to the nmnber of calls to fen. 

fjac is an output m by n array. The upper n by n submatrix of §ac contains 

an upper triangular matrix r with diagonal elements of non-increasing magnitude 

such that p' * {jac^ * jac) *p = *r where p is a permutation matrix and jac is 

the final calculated Jacobian. Column j of p is column ipvt(j) (see below) of the 

identity matrix. The lower trapezoidal part of ^ac contains information generated 

during the computation of r. 

Idfjac is a positive integer input variable not less than m which specifies the leading 

dimension of the array §ac. 

ipvt is an integer output array of length n. ipvt defines a permutation matrix p 

such that jac*p = q*r, where jac is the final calculated Jacobian, q is orthogonal 

(not stored), and r is upper triangular with diagonal elements of non-increasing 

magnitude. Column j of p is column ipvt(i) of the identity matrix. 
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• 9</is an output array of length n which contains the first n elements of the vector 

(q transpose) *fvec. 

• wal, wa2, and waS are work arrays of length n. 

• wa4 is a work array of length m. 

A.3 Parallelization of the Code 

In this section a sample program which is written by Fortran 77 for parallel com­

putation is presented. MPI (Message Passing Interface) [34] is used to parallelize the 

code. One approach to parallelizing this program is to simply use the same number of 

processors as the nimiber of the initial guesses, for example we have 4 general initial 

guesses to calculate z^, so with 4 processors we could try those at the same time and 

reduce the computational time. A sample program to calculate Zo is as follows : 

program sample 

.... Declaration Part 
include "mpif.h" ! defines various mpi constants and variables 

.... Declaration Part 

caU mpi_init(ierr) 
c— Required in every mpi program and must be the first mpi routine called, 
c— ierr is an error code that returns the value mpijsuccess if this subroutine 
c— successfully completes. 

call mpi_comm_size(mpi_comm_world, nprocs, ierr) 
c— nprocs is the number of processors that have been started up for this program. 

call mpi_comm_rank(mpi-conmi_world, rank, ierr) 
c— rank is the number of assigned processor. 
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.... Data Reading Part 
h2 coefficients, data from eigenanalysis, Xo, and etc 

call mpiJbcastO 
Reqxiired data can be used at all processors 

.... Calculation of yo 

call fcnh2(x,fh2) 
This is a subroutine to calculate the sununation term of h2 

write(*,*)'There are 4 options to choose the initial guess' 
write(*,*)'l. Zo = 0' 
write(*,*)'2. Zo = Yo' 
write(*,*)'3. Zo = yo-h2(yo)' 
write(*,*)'4. Zo from a file' 
write(*,*)'enter your selection : ' 
Each initial guess is used at different processors 

If (rank .eq. 0) then 
mpi-send() 

else 

call lmdif(fcn,ns,ns,x,fvec,ftol,xtol,gtol,maxfev,epsfcn, 
diag,mode,factor,nprint,info,nfev,5ac,ld§ac, 
ipvt ,qtf, wal, wa2, wa3, wa4) 
This is a subroutine to calculate Zo 

endif 

call mpi finalize(ierr) 
No mpi functions called after called. 

end 
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APPENDIX B POWER FLOW GENERATOR BUS DATA 

FOR THE TEST SYSTEM 

Table B.l Power flow 50-generator bus data 

Bus |V| ang(V) Pload Qload Pgen Qgen 

# p.u. degree MW MVAR MW MVAR 
60 1.1370 -0.07 0.00 0.00 51.00 30.36 
67 1.0900 2.03 0.00 0.00 1486.00 307.22 
79 1.0520 -1.22 9.10 3.00 250.20 -17.26 
80 1.0690 -.03 17.10 5.00 47.00 -14.62 
82 0.9750 -10.25 2.10 1.10 70.00 18.15 
89 1.0660 13.17 0.60 0.20 673.00 138.79 
90 0.9500 -.45 4.60 1.50 22.00 -4.03 
91 1.0000 -0.57 0.00 0.00 64.00 0.30 
93 1.0000 10.12 100.40 73.20 900.00 400.92 
94 1.0200 5.57 15.40 7.60 300.00 17.11 
95 0.9200 23.32 6.70 2.20 131.00 8.13 
96 1.0000 0.27 0.00 0.00 60.00 21.56 
97 0.9670 3.50 0.00 0.00 140.00 45.61 
98 0.9700 14.75 0.00 0.00 426.00 -30.28 
99 1.0000 12.56 10.46 5.23 200.00 -4.94 

100 1.014 10.20 0.00 0.00 170.00 59.94 
101 1.039 3.34 17.80 4.50 310.90 152.08 
102 1.019 .51 37.60 9.20 2040.00 511.85 
103 1.0000 10.99 0.00 0.00 135.00 5.56 
104 1.0045 22.95 30.20 7.60 2000.00 500.00 
105 1.0070 6.63 96.00 167.40 1620.00 399.29 
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Table B.l (Continued) 

1.0050 
1.0140 
0.9150 
1.0000 
1.0000 
1.0370 
1.0490 
1.0430 
1.0300 
1.0100 
1.0130 
1.0460 
1.0000 
1.0000 
1.0250 
1.0570 
1.0420 
1.0420 
1.0440 
1.1070 
1.0830 
1.0640 
1.0400 
1.0500 
1.0530 
1.1550 
1.0310 
0.9970 
1.0520 

6.67 
-6.38 

-10.02 
11.08 
16.87 
3.16 

-12.86 
-13.22 
-10.91 
-13.83 
-55.03 
-13.62 

3.65 
5.48 

-34.72 
-47.95 
-20.86 
-3.14 
-9.61 
30.76 
5.98 

-72.22 
-9.97 

-25.60 
-6.94 
-7.86 

-10.22 
-5.72 
5.02 

64.00 
0.00 
0.00 

100.40 
60.40 
18.60 

683.50 
792.60 
485.30 
651.90 

2094.00 
237.70 
29.20 
94.10 

4075.00 
4328.00 

21840.00 
491.90 

22309.00 
4298.00 

52951.00 
12946.00 
57718.00 
24775.00 
32799.00 
17737.00 
4672.00 
9602.00 
9173.00 

16.00 
0.00 
0.00 

73.20 
1166.00 

4.60 
184.70 
315.50 
71.40 

328.40 
3774.00 

-17.30 
7.00 

780.30 
703.50 
944.30 

4320.00 
110.20 

7402.00 
1264.00 

13552.00 
2608.00 

13936.00 
6676.00 

11361.00 
3934.00 
1709.00 
2203.00 
1555.00 

1080.00 
800.00 
52.00 

900.00 
2000.00 
300.00 

2493.00 
2713.00 
2627.00 
4220.00 
8954.00 
2997.00 
1009.00 
3005.00 

12963.00 
5937.00 

28300.00 
3095.00 

20626.00 
5982.00 

51950.00 
12068.00 
56834.00 
23123.00 
37911.00 
24449.00 
5254.00 

11397.00 
13704.44 

217.42 
87.25 

-14.96 
547.99 
585.89 
143.50 
129.86 
634.36 
284.69 
683.90 

4774.62 
-72.65 
188.25 
607.94 

2640.14 
1803.82 
7374.55 
646.11 

7363.90 
1565.57 
1444.09 
3449.78 

15823.84 
6709.95 

11607.74 
5475.17 
2172.34 
2682.51 
2836.85 
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